Journal Article
- Enhancement of the solubility of recombinant proteins by fusion with a short-disordered peptide
-
Jun Ren , Suhee Hwang , Junhao Shen , Hyeongwoo Kim , Hyunjoo Kim , Jieun Kim , Soyoung Ahn , Min-gyun Kim , Seung Ho Lee , Dokyun Na
-
J. Microbiol. 2022;60(9):960-967. Published online July 14, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2122-z
-
-
14
View
-
0
Download
-
5
Citations
-
Abstract
- In protein biotechnology, large soluble fusion partners are
widely utilized for increased yield and solubility of recombinant
proteins. However, the production of additional large
fusion partners poses an additional burden to the host, leading
to a decreased protein yield. In this study, we identified
two highly disordered short peptides that were able to increase
the solubility of an artificially engineered aggregationprone
protein, GFP-GFIL4, from 0.6% to 61% (D3-DP00592)
and 46% (D4-DP01038) selected from DisProt database. For
further confirmation, the peptides were applied to two insoluble
E. coli proteins (YagA and YdiU). The peptides also
enhanced solubility from 52% to 90% (YagA) and from 27%
to 93% (YdiU). Their ability to solubilize recombinant proteins
was comparable with strong solubilizing tags, maltosebinding
protein (40 kDa) and TrxA (12 kDa), but much smaller
(< 7 kDa) in size. For practical application, the two peptides
were fused with a restriction enzyme, I-SceI, and they increased
I-SceI solubility from 24% up to 75%. The highly disordered
peptides did not affect the activity of I-SceI while I-SceI fused
with MBP or TrxA displayed no restriction activity. Despite
the small size, the highly disordered peptides were able to
solubilize recombinant proteins as efficiently as conventional
fusion tags and did not interfere with the function of recombinant
proteins. Consequently, the identified two highly disordered
peptides would have practical utility in protein biotechnology
and industry.
Research Support, Non-U.S. Gov't
- Evaluation of the Cell Growth of Mycobacteria Using Mycobacterium smegmatis mc2 155 as a Representative Species
-
Jorge A. Gonzalez-y-Merchand , Ruben Zaragoza-Contreras , Rosalina Guadarrama-Medina , Addy C. Helguera-Repetto , Sandra Rivera-Gutierrez , Jorge F. Cerna-Cortes , Leopoldo Santos-Argumedo , Robert A. Cox
-
J. Microbiol. 2012;50(3):419-425. Published online June 30, 2012
-
DOI: https://doi.org/10.1007/s12275-012-1556-0
-
-
14
View
-
0
Download
-
7
Citations
-
Abstract
- The study of the in vitro cell growth of mycobacteria still remains a fastidious, difficult, and time-consuming procedure. In addition, assessing mycobacterial growth in the laboratory is often complicated by cell aggregation and slow growth-rate. We now report that the use of a stainless steel spring in the culture led to an absence of large cell clumps, to a decrease of dead cells in the exponential phase and to growth of a more homogeneous population of large cells. We also report that flow cytometry is a rapid, simple and reliable approach to monitor mycobacterial cell growth and viability. Here, we monitored Mycobacterium smegmatis cellular growth by optical density, dry cell mass, and colony forming units; in addition, viability, cell size and granularity profiles were analyzed by flow cytometry, and cell morphology by electron microscopy. Cultures monitored by flow cytometry may lead to a better understanding of the physiology of mycobacteria. Moreover, this methodology may aid in characterizing the cell growth of other fastidious species of microorganisms.