Search
- Page Path
-
HOME
> Search
Journal Articles
- Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast.
-
Ho-Jung Kim, Soo-Yeon Cho, Soo-Jin Jung, Yong-Jun Cho, Jung-Hye Roe, Kyoung-Dong Kim
-
J. Microbiol. 2024;62(8):639-648. Published online June 25, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00147-8
-
-
Abstract
- Aconitase-2 (Aco2) is present in the mitochondria, cytosol, and nucleus of fission yeast. To explore its function beyond the well-known role in the mitochondrial tricarboxylic acid (TCA) cycle, we conducted genome-wide profiling using the aco2ΔNLS mutant, which lacks a nuclear localization signal (NLS). The RNA sequencing (RNA-seq) data showed a general downregulation of electron transport chain (ETC) genes in the aco2ΔNLS mutant, except for those in the complex II, leading to a growth defect in respiratory-prone media.
Complementation analysis with non-catalytic Aco2 [aco2ΔNLS + aco2(3CS)], where three cysteines were substituted with serine, restored normal growth and typical ETC gene expression. This suggests that Aco2's catalytic activity is not essential for its role in ETC gene regulation. Our mRNA decay assay indicated that the decrease in ETC gene expression was due to transcriptional regulation rather than changes in mRNA stability. Additionally, we investigated the Php complex's role in ETC gene regulation and found that ETC genes, except those within complex II, were downregulated in php3Δ and php5Δ strains, similar to the aco2ΔNLS mutant. These findings highlight a novel role for nuclear aconitase in ETC gene regulation and suggest a potential connection between the Php complex and Aco2.
- Saxibacter everestensis gen. nov., sp. nov., A Novel Member of the Family Brevibacteriaceae, Isolated from the North Slope of Mount Everest.
-
Mao Tian, Shiyu Wu, Wei Zhang, Gaosen Zhang, Xue Yu, Yujie Wu, Puchao Jia, Binglin Zhang, Tuo Chen, Guangxiu Liu
-
J. Microbiol. 2024;62(4):277-284. Published online March 6, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00108-1
-
-
Abstract
- We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038(T), from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10-37 °C, pH 4-10, and 0-6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C(15:0) and iso-C(17:0). Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038(T) has the highest similarity with Spelaeicoccus albus DSM 26341( T) (96.02%). ZFBP1038(T) formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038(T) was 63.65 mol% and the genome size was 4.05 Mb.
Digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038(T) and representative reference strains were 19.3-25.2, 68.0-71.0, and 52.8-60.1%, respectively.
Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038(T) represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038(T) (= EE 014( T) = GDMCC 1.3024( T) = JCM 35335( T)).
- LAMMER Kinase Governs the Expression and Cellular Localization of Gas2, a Key Regulator of Flocculation in Schizosaccharomyces pombe
-
Won-Hwa Kang , Yoon-Dong Park , Joo-Yeon Lim , Hee-Moon Park
-
J. Microbiol. 2024;62(1):21-31. Published online January 5, 2024
-
DOI: https://doi.org/10.1007/s12275-023-00097-7
-
-
Abstract
- It was reported that LAMMER kinase in Schizosaccharomyces pombe plays an important role in cation-dependent and
galactose-specific flocculation. Analogous to other flocculating yeasts, when cell wall extracts of the Δlkh1 strain were treated
to the wild-type strain, it displayed flocculation. Gas2, a 1,3-β-glucanosyl transferase, was isolated from the EDTA-extracted
cell-surface proteins in the Δlkh1 strain. While disruption of the gas2+ gene was not lethal and reduced the flocculation
activity of the Δlkh1 strain, the expression of a secreted form of Gas2, in which the GPI anchor addition sequences had been
removed, conferred the ability to flocculate upon the WT strain. The Gas2-mediated flocculation was strongly inhibited by
galactose but not by glucose. Immunostaining analysis showed that the cell surface localization of Gas2 was crucial for the
flocculation of fission yeast. In addition, we identified the regulation of mbx2+ expression by Lkh1 using RT-qPCR. Taken
together, we found that Lkh1 induces asexual flocculation by regulating not only the localization of Gas2 but also the transcription
of gas2+ through Mbx2.
- Impact of Elevational Gradients and Chemical Parameters on Changes in Soil Bacterial Diversity Under Semiarid Mountain Region
-
Salman Khan , Chun Han , Awais Iqbal , Chao Guan , Changming Zhao
-
J. Microbiol. 2023;61(10):903-915. Published online November 23, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00085-x
-
-
Abstract
- Elevation gradients, often regarded as “natural experiments or laboratories”, can be used to study changes in the distribution
of microbial diversity related to changes in environmental conditions that typically occur over small geographical scales. We
obtained bacterial sequences using MiSeq sequencing and clustered them into operational taxonomic units (OTUs). The total
number of reads obtained by the bacterial 16S rRNA sequencing analysis was 1,090,555, with an average of approximately
45,439 reads per sample collected from various elevations. The current study observed inconsistent bacterial diversity patterns
in samples from the lowest to highest elevations. 983 OTUs were found common among all the elevations. The most
unique OTUs were found in the soil sample from elevation_2, followed by elevation_1. Soil sample collected at elevation_6
had the least unique OTUs. Actinobacteria, Protobacteria, Chloroflexi were found most abundant bacterial phyla in current
study. Ammonium nitrogen (
NH4
+-N), and total phosphate (TP) are the main factors influencing bacterial diversity at elevations_
1. pH was the main factor influencing the bacterial diversity at elevations_2, elevation_3 and elevation_4. Our results
provide new visions on forming and maintaining soil microbial diversity along an elevational gradient and have implications
for microbial responses to environmental change in semiarid mountain ecosystems.
- Development of a Novel D‑Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746
-
Kitisak Sansatchanon , Pipat Sudying , Peerada Promdonkoy , Yutthana Kingcha , Wonnop Visessanguan , Sutipa Tanapongpipat , Weerawat Runguphan , Kanokarn Kocharin
-
J. Microbiol. 2023;61(9):853-863. Published online September 14, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00077-x
-
-
15
View
-
0
Download
-
2
Citations
-
Abstract
- D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we
developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic
acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains,
Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism.
We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and
observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic
acid production, which reduced the product’s optical purity. We then used CRISPR/dCas9-assisted transcriptional repression
to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid
production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional
repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.
- Ultrasonic Treatment Enhanced Astaxanthin Production of Haematococcus pluvialis
-
Yun Hwan Park , Jaewon Park , Jeong Sik Choi , Hyun Soo Kim , Jong Soon Choi , Yoon-E Choi
-
J. Microbiol. 2023;61(6):633-639. Published online June 13, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00053-5
-
-
17
View
-
0
Download
-
1
Citations
-
Abstract
- In this study, effects of ultrasonic treatment on Haematococcus pluvialis (H. pluvialis) were investigated. It has been confirmed
that the ultrasonic stimulation acted as stress resources in the red cyst stage H. pluvialis cells containing astaxanthin,
result
ing in additional astaxanthin production. With the increase in production of astaxanthin, the average diameter of H.
pluvialis cells increased accordingly. In addition, to determine how ultrasonic stimulation had an effect on the further biosynthesis
of astaxanthin, genes related to astaxanthin synthesis and cellular ROS level were measured. As a result, it was
confirmed that astaxanthin biosynthesis related genes and cellular ROS levels were increased, and thus ultrasonic stimulation
acts as an oxidative stimulus. These results support the notion on the effect of the ultrasonic treatment, and we believe
our novel approach based on the ultrasonic treatment would help to enhance the astaxanthin production from H. pluvialis.
Editorial
- Editorial] Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
-
Jin-Won Lee
-
J. Microbiol. 2023;61(3):273-276. Published online April 3, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00036-6
-
-
20
View
-
0
Download
-
1
Citations
-
Abstract
- Bacteria employ a diverse array of cellular regulatory
mechanisms to successfully adapt and thrive in ever-changing
environments, including but not limited to temperature
changes, fluctuations in nutrient availability, the presence
or absence of electron acceptors such as oxygen, the availability
of metal ions crucial for enzyme activity, and the
existence of antibiotics. Bacteria can virtually modulate
any step of gene expression from transcr!ptional initiation
to posttranslational modification of a protein for the control
of cellular processes. Furthermore, one gene regulator
often controls another in a complex gene regulatory network.
Thus, it is not easy to fully understand the intricacies of
bacterial regulatory mechanisms in various environments. In
this special issue, while acknowledging the challenge of covering
all aspects of bacterial regulatory mechanisms across
diverse environments, seven review articles are included to
provide insight into the recent progress in understanding
such mechanisms from different perspectives: positive regulatory
mechanisms by secondary messenger (cAMP receptor
protein), two-component signal transduction mechanisms
(Rcs and Cpx), diverse regulatory mechanisms by a specific
environmental factor in specific bacteria (oxygen availability
in Mycobacterium and manganese ion availability in Salmonella),
diverse regulatory mechanisms by a specific environmental
factor (temperature and antibiotics), and regulatory
mechanisms by antibiotics in cell wall synthesis.
Bacteria, as ubiquitous organisms that can be found in
almost every environment, carry out complex cellular processes
that allow them to survive and thrive in a variety of
different conditions despite their small size and relative simplicity.
One of the key factors that allows bacteria to carry
out these complex processes is their ability to regulate gene
expression through various mechanisms. Gene expression
is a fundamental biological process by which the genetic
information encoded in a gene is transcribed into an RNA
molecule and subsequently translated into a functional gene
product, often a protein. Furthermore, the activity levels of
proteins may further be altered by posttranslational modification.
Regulation of gene expression refers to the control
of the amount and timing of gene expression, and thus it
can be divided into transcr!ptional, translational, and posttranslational
levels.
Journal Articles
- Descr!ption of Ornithinimicrobium cryptoxanthini sp. nov., a Novel Actinomycete Producing β‑cryptoxanthin Isolated from the Tongtian River Sediments
-
Yuyuan Huang , Yifan Jiao , Sihui Zhang , Yuanmeihui Tao , Suping Zhang , Dong Jin , Ji Pu , Liyun Liu , Jing Yang , Shan Lu
-
J. Microbiol. 2023;61(4):379-388. Published online March 16, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00029-5
-
-
19
View
-
0
Download
-
1
Citations
-
Abstract
- Two novel Gram-stain-positive, aerobic, non-motile, and yellow-pigmented, irregular rod-shaped bacteria (JY.X269 and
JY.X270T) were isolated from the near-surface sediments of river in Qinghai Province, P. R. China (32°37′13″N, 96°05′37″E)
in July 2019. Both strains were shown to grow at 15–35 °C and pH 7.0–10.0, and in the presence of 0–6.0% (w/v) NaCl.
The 16S rRNA gene sequence analysis showed that the isolates were closely related to Ornithinimicrobium cavernae CFH
30183
T (98.6–98.8% 16S rRNA gene sequence similarity), O. ciconiae H23M54T
(98.5–98.6%) and O. murale 01-Gi-040T
(98.3–98.5%). The phylogenetic and phylogenomic trees based on the 16S rRNA gene and 537 core gene sequences, respectively,
revealed that the two strains formed a distinct cluster with the above three species. The digital DNA-DNA hybridization
(dDDH) and average nucleotide identity (ANI) values between our two isolates (JY.X269 and JY.X270T) and other
Ornithinimicrobium species were within the ranges of 19.0–23.9% and 70.8–80.4%, respectively, all below the respective
recommended 70.0% and 95–96% cutoff point. Furthermore, the major cellular fatty acids (> 10.0%) of strains JY.X269 and
JY.X270T were iso-C15:0, iso-C16:0, and summed feature 9. Strain JY.X270T contained MK-8(H4) and ornithine as the predominant
menaquinone and diagnostic diamino acid component within the cell wall teichoic acids. β-cryptoxanthin (
C40H56O) can
be extracted from strain JY.X270T, and its content is 6.3 μg/ml. Based on results from the phylogenetic, chemotaxonomic,
and phenotypic analyses, the two strains could be classified as a novel species of the genus Ornithinimicrobium, for which
the name Ornithinimicrobium cryptoxanthini sp. nov. is proposed (type strain JY.X270T = CGMCC 1.19147T = JCM 34882T).
- The Revision of Lichen Flora Around Maxwell Bay, King George Island, Maritime Antarctic
-
Jae Eun So , Josef P. Halda , Soon Gyu Hong , Jae , Ji Hee Kim
-
J. Microbiol. 2023;61(2):159-173. Published online February 27, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00015-x
-
-
23
View
-
0
Download
-
1
Citations
-
Abstract
- Since the floristic study of lichens at the Barton and Weaver Peninsulas of King George Island in 2006, there have been
intense investigations of the lichen flora of the two peninsulas as well as that of Fildes Peninsula and Ardley Island in Maxwell
Bay, King George Island, South Shetland Islands, maritime Antarctic. In this study, a total of 104 species belonging
to 53 genera, are identified from investigations of lichens that were collected in austral summer seasons from 2008 to 2016.
Phenotypic and molecular analyses were incorporated for taxonomic identification. In particular, 31 species are found to
be endemic to the Antarctic and 22 species are newly recorded to the Maxwell Bay region. Lepra dactylina, Stereocaulon
caespitosum, and Wahlenbergiella striatula are newly recorded in the Antarctic, and the previously reported taxon Cladonia
furcata is excluded from the formerly recorded list due to misidentification. We also provide ecological and geographical
information about lichen associations and habitat preferences.
- Rasiella rasia gen. nov. sp. nov. within the family Flavobacteriaceae isolated from seawater recirculating aquaculture system
-
Seong-Jin Kim , Young-Sam Kim , Sang-Eon Kim , Hyun-Kyoung Jung , Jeeeun Park , Min-Ju Yu , Kyoung-Ho Kim
-
J. Microbiol. 2022;60(11):1070-1076. Published online October 17, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2099-7
-
-
17
View
-
0
Download
-
1
Citations
-
Abstract
- A novel bacterium designated RR4-40T was isolated from a
biofilter of seawater recirculating aquaculture system in Busan,
South Korea. Cells are strictly aerobic, Gram-negative, irregular
short rod, non-motile, and oxidase- and catalase-negative.
Growth was observed at 15–30°C, 0.5–6% NaCl (w/v),
and pH 5.0–9.5. The strain grew optimally at 28°C, 3% salinity
(w/v), and pH 8.5. The phylogenetic analysis based on
16S rRNA gene sequences showed that strain RR4-40T was
most closely related to Marinirhabdus gelatinilytica NH83T
(94.16% of 16S rRNA gene similarity) and formed a cluster
with genera within the family Flavobacteriaceae. The values
of the average nucleotide identity (ANI), digital DNA-DNA
hybridization (dDDH), and average amino acid identity (AAI)
between genomes of strain RR4-40T and M. gelatinilytica
NH83T were 72.91, 18.2, and 76.84%, respectively, and the
values against the strains in the other genera were lower than
those. The major fatty acids were iso-C15:0 (31.34%), iso-C17:0
3-OH (13.65%), iso-C16:0 3-OH (10.61%), and iso-C15:1 G
(10.38%). The polar lipids comprised phosphatidylglycerol,
diphosphatidylglycerol, aminophospholipid, aminolipid, glycolipid,
and sphingolipid. The major respiratory quinone was
menaquinone-6 (MK-6) and the DNA G + C content of strain
RR4-40T was 37.4 mol%. According to the polyphasic analysis,
strain RR4-40T is considered to represent a novel genus within
the family Flavobacteriaceae, for which the name Rasiella
rasia gen. nov, sp. nov. is proposed. The type strain is RR4-40T
(= KCTC 52650T = MCCC 1K04210T).
- Sulforaphane kills Mycobacterium tuberculosis H37Ra and Mycobacterium smegmatis mc2155 through a reactive oxygen species dependent mechanism
-
Yongjie Zhao , Shengwen Shang , Ya Song , Tianyue Li , Mingliang Han , Yuexuan Qin , Meili Wei , Jun Xi , Bikui Tang
-
J. Microbiol. 2022;60(11):1095-1105. Published online September 1, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2284-8
-
-
17
View
-
0
Download
-
2
Citations
-
Abstract
- Mycobacterium tuberculosis (M. tuberculosis) is a highly pathogenic
intracellular pathogen that causes tuberculosis (TB),
the leading cause of mortality from single infections. Redox
homeostasis plays a very important role in the resistance of
M. tuberculosis to antibiotic damage and various environmental
stresses. The antioxidant sulforaphane (SFN) has been
reported to exhibit anticancer activity and inhibit the growth
of a variety of bacteria and fungi. Nonetheless, it remains unclear
whether SFN exhibits anti-mycobacterial activity. Our
results
showed that the SFN against M. tuberculosis H37Ra
exhibited bactericidal activity in a time and dose-dependent
manner. The anti-tubercular activity of SFN was significantly
correlated with bacterial reactive oxygen species (ROS) levels.
In addition, SFN promoted the bactericidal effect of macrophages
on intracellular bacteria in a dose-dependent manner,
mediated by increasing intracellular mitochondrial ROS
levels and decreasing cytoplasmic ROS levels. Taken together,
our data revealed the previously unrecognized antimicrobial
functions of SFN. Future studies focusing on the mechanism
of SFN in macrophages against M. tuberculosis are
essential for developing new host-directed therapeutic approaches
against TB.
- Helicobacter pylori-mediated gastric pathogenesis is attenuated by treatment of 2-deoxyglucose and metformin
-
Hanfu Su , Eun-Jung Bak , Aeryun Kim , Kavinda Tissera , Jeong-Heon Cha , Sungil Jang
-
J. Microbiol. 2022;60(8):849-858. Published online June 22, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2130-z
-
-
17
View
-
0
Download
-
3
Citations
-
Abstract
- Helicobacter pylori infection causes chronic inflammation
in the stomach, which is linked to the development of gastric
cancer. The anti-inflammatory and anticancer effects of a
glycolysis inhibitor 2-deoxyglucose (2DG) and an antidiabetic
medication metformin (Met) have gotten attention. Using a
Mongolian gerbil animal model, we investigated H. pylorimediated
gastric pathogenesis and how this pathogenesis is
influenced by 2DG and Met. Five-week-old male gerbils were
infected with H. pylori strain 7.13. After 2 weeks of infection,
gerbils were fed 2DG-containing food (0.03% w/w), Met-containing
water (0.5% w/v), or both (Combi) for 2 (short-term)
or 10 weeks (long-term). Gastric pathogenesis and host response
to H. pylori infection were examined by macroscopic
and histopathologic analysis of gerbils’ stomach. As a result,
indicators of gastric pathogenesis by H. pylori infection including
infiltration of polymorphonuclear neutrophils and
lymphocytes, intestinal metaplasia, atrophy, and proliferation
of gastric epithelial cells were attenuated by short-term administration
of 2DG, Met, or Combi. When the infection was
sustained for long-term, gastric pathogenesis in drug-treated
gerbils was equivalent to that in untreated gerbils, with the
exception that the infiltration of neutrophil was reduced by
2DG. Colonization of H. pylori in stomach was unaffected
by both short- and long-term treatments. Our findings demonstrate
that the progression of gastric pathogenesis induced
by H. pylori infection can be attenuated by the shortterm
individual or combinational treatment of 2DG and
Met, implying that 2DG or Met could be considered as a
treatment option for gastric diseases in the early stages of
infection.
- Pat- and Pta-mediated protein acetylation is required for horizontallyacquired virulence gene expression in Salmonella Typhimurium
-
Hyojeong Koo , Eunna Choi , Shinae Park , Eun-Jin Lee , Jung-Shin Lee
-
J. Microbiol. 2022;60(8):823-831. Published online May 27, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2095-y
-
-
Abstract
- Salmonella Typhimurium is a Gram-negative facultative pathogen
that causes a range of diseases, from mild gastroenteritis
to severe systemic infection in a variety of animal
hosts. S. Typhimurium regulates virulence gene expression
by a silencing mechanism using nucleoid-associated proteins
such as Histone-like Nucleoid Structuring protein (H-NS)
silencing. We hypothesize that the posttranslational modification,
specifically protein acetylation, of proteins in gene
silencing systems could affect the pathogenic gene expression
of S. Typhimurium. Therefore, we created acetylation-deficient
mutant by deleting two genes, pat and pta, which are
involved in the protein acetylation pathway. We observed
that the pat and pta deletion attenuates mouse virulence and
also decreases Salmonella’s replication within macrophages.
In addition, the Δpat Δpta strain showed a decreased expression
of the horizontally-acquired virulence genes, mgtC,
pagC, and ugtL, which are highly expressed in low Mg2+. The
decreased virulence gene expression is possibly due to higher
H-NS occupancy to those promoters because the pat and
pta deletion increases H-NS occupancy whereas the same
mutation decreases occupancy of RNA polymerase. Our results
suggest that Pat- and Pta-mediated protein acetylation
system promotes the expression of virulence genes by regulating
the binding affinity of H-NS in S. Typhimurium.
- Description of Polaribacter batillariae sp. nov., Polaribacter cellanae sp. nov., and Polaribacter pectinis sp. nov., novel bacteria isolated from the gut of three types of South Korean shellfish
-
Su-Won Jeong , Jeong Eun Han , June-Young Lee , Ji-Ho Yoo , Do-Yeon Kim , In Chul Jeong , Jee-Won Choi , Yun-Seok Jeong , Jae-Yun Lee , So-Yeon Lee , Euon Jung Tak , Hojun Sung , Hyun Sik Kim , Pil Soo Kim , Dong-Wook Hyun , Jin-Woo Bae
-
J. Microbiol. 2022;60(6):576-584. Published online April 18, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1604-3
-
-
21
View
-
0
Download
-
1
Citations
-
Abstract
- Three aerobic, Gram-negative, and rod-shaped bacterial strains,
designated strains G4M1T, SM13T, and L12M9T, were isolated
from the gut of Batillaria multiformis, Cellana toreuma, and
Patinopecten yessoensis collected from the Yellow Sea in South
Korea. All the strains grew optimally at 25°C, in the presence
of 2% (w/v) NaCl, and at pH 7. These three strains, which
belonged to the genus Polaribacter in the family Flavobacteriaceae,
shared < 98.8% in 16S rRNA gene sequence and < 86.68%
in whole-genome sequence with each other. Compared with
the type strains of Polaribacter, isolates showed the highest
sequence similarity to P. haliotis KCTC 52418T (< 98.68%),
followed by P. litorisediminis KCTC 52500T (< 98.13%). All
the strains contained MK-6 as their predominant menaquinone
and iso-C15:0 as their major fatty acid. Moreover, all the
strains had phosphatidylethanolamine as their polar lipid
component. In addition, strain G4M1T had two unidentified
lipids and three unidentified aminolipids, strain SM13T had
three unidentified lipids and three unidentified aminolipids,
and strain L12M9T had three unidentified lipids and one unidentified
aminolipid. The DNA G + C contents of strains
G4M1T, SM13T, and L12M9T were 31.0, 30.4, and 29.7 mol%,
respectively. Based on phenotypic, phylogenetic, chemotaxonomic,
and genotypic findings, strains G4M1T (= KCTC 82388T
= DSM 112372T), SM13T (= KCTC 82389T = DSM 112373T),
and L12M9T (= KCTC 62751T = DSM 112374T) were classified
into the genus Polaribacter as the type strains of novel
species, for which the names Polaribacter batillariae sp. nov.,
Polaribacter cellanae sp. nov., and Polaribacter pectinis sp.
nov., respectively, have been proposed.
Review
- Protective and pathogenic role of humoral responses in COVID-19
-
Uni Park , Nam-Hyuk Cho
-
J. Microbiol. 2022;60(3):268-275. Published online March 2, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2037-8
-
-
22
View
-
0
Download
-
4
Citations
-
Abstract
- Since the advent of SARS-CoV-2 in Dec. 2019, the global endeavor
to identify the pathogenic mechanism of COVID-19
has been ongoing. Although humoral immunity including
neutralizing activity play an important role in protection from
the viral pathogen, dysregulated antibody responses may be
associated with the pathogenic progression of COVID-19,
especially in high-risk individuals. In addition, SARS-CoV-2
spike-specific antibodies acquired by prior infection or vaccination
act as immune pressure, driving continuous population
turnover by selecting for antibody-escaping mutations.
Here, we review accumulating knowledge on the potential
role of humoral immune responses in COVID-19, primarily
focusing on their beneficial and pathogenic properties. Understanding
the multifaceted regulatory mechanisms of humoral
responses during SARS-CoV-2 infection can help us to develop
more effective therapeutics, as well as protective measures
against the ongoing pandemic.
TOP