Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "PCR"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Licochalcone A Protects Vaginal Epithelial Cells Against Candida albicans Infection Via the TLR4/NF-κB Signaling Pathway.
Wei Li, Yujun Yin, Taoqiong Li, Yiqun Wang, Wenyin Shi
J. Microbiol. 2024;62(7):525-533.   Published online May 31, 2024
DOI: https://doi.org/10.1007/s12275-024-00134-z
  • 82 View
  • 0 Download
AbstractAbstract
Vulvovaginal candidiasis (VVC) is a prevalent condition affecting a significant portion of women worldwide. Licochalcone A (LA), a natural compound with diverse biological activities, holds promise as a protective agent against Candida albicans (C. albicans) infection. This study aims to investigate the potential of LA to safeguard vaginal epithelial cells (VECs) from C. albicans infection and elucidate the underlying molecular mechanisms. To simulate VVC in vitro, VK2-E6E7 cells were infected with C. albicans. Candida albicans biofilm formation, C. albicans adhesion to VK2-E6E7 cells, and C. albicans-induced cell damage and inflammatory responses were assessed by XTT reduction assay, fluorescence assay, LDH assay, and ELISA. CCK-8 assay was performed to evaluate the cytotoxic effects of LA on VK2-E6E7 cells. Western blotting assay was performed to detect protein expression. LA dose-dependently hindered C. albicans biofilm formation and adhesion to VK2-E6E7 cells. Furthermore, LA mitigated cell damage, inhibited the Bax/Bcl-2 ratio, and attenuated the secretion of pro-inflammatory cytokines in C. albicans-induced VK2-E6E7 cells. The investigation into LA's impact on the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway revealed that LA downregulated TLR4 expression and inhibited NF-κB activation in C. albicans-infected VK2-E6E7 cells. Furthermore, TLR4 overexpression partially abated LA-mediated protection, further highlighting the role of the TLR4/NF-κB pathway. LA holds the potential to safeguard VECs against C. albicans infection, potentially offering therapeutic avenues for VVC management.
Development of a Novel D‑Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746
Kitisak Sansatchanon , Pipat Sudying , Peerada Promdonkoy , Yutthana Kingcha , Wonnop Visessanguan , Sutipa Tanapongpipat , Weerawat Runguphan , Kanokarn Kocharin
J. Microbiol. 2023;61(9):853-863.   Published online September 14, 2023
DOI: https://doi.org/10.1007/s12275-023-00077-x
  • 14 View
  • 0 Download
  • 2 Citations
AbstractAbstract
D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains, Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism. We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic acid production, which reduced the product’s optical purity. We then used CRISPR/dCas9-assisted transcriptional repression to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.
Correlation between fat accumulation and fecal microbiota in crossbred pigs
Xin Li , Mengyu Li , Jinyi Han , Chuang Liu , Xuelei Han , Kejun Wang , Ruimin Qiao , Xiu-Ling Li , Xin-Jian Li
J. Microbiol. 2022;60(11):1077-1085.   Published online September 9, 2022
DOI: https://doi.org/10.1007/s12275-022-2218-5
  • 22 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Backfat thickness (BF) is an important indicator of fat deposition capacity and lean meat rate in pigs and is very important in porcine genetics and breeding. Intestinal microbiota plays a key role in nutrient digestion and utilization with a profound impact on fat deposition of livestock animals. To investigate the relationship between the pig gut microbiome and BF, 20 low-BF (L-BF) and 20 high-BF (H-BF) pigs were selected as two groups from Yunong Black pigs in the present study. Fecal samples from pigs were analyzed for microbial diversity, composition, and predicted functionality using 16S rRNA gene sequencing. The results showed that there were significant differences in microbial β diversity between the two groups. LEfSe analysis revealed a number of bacterial features being differentially enriched in either L-BF or H-BF pigs. Spearman correlation analysis identified the abundance of Oscillospira, Peptococcus, and Bulleidia were significantly positive correlations with BF (P < 0.05), while Sutterella and Bifidobacterium were significantly negatively correlated with BF (P < 0.05). Importantly, the bacteria significantly positively correlated with BF mainly belong to Clostridium, which can ferment host-indigestible plant polysaccharides into shortchain fatty acid (SCFA) and promote fat synthesis and deposition. Predictive functional analysis indicated that the pathway abundance of cell motility and glycan biosynthesis were significantly widespread in the microbiota of the H-BF group. The results of this study will be useful for the development of microbial biomarkers for predicting and improving porcine BF, as well as for the investigation of targets for dietary strategies.
Rab27b regulates extracellular vesicle production in cells infected with Kaposi’s sarcoma–associated herpesvirus to promote cell survival and persistent infection
Hyungtaek Jeon , Su-Kyung Kang , Myung-Ju Lee , Changhoon Park , Seung-Min Yoo , Yun Hee Kang , Myung-Shin Lee
J. Microbiol. 2021;59(5):522-529.   Published online April 20, 2021
DOI: https://doi.org/10.1007/s12275-021-1108-6
  • 13 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication. EVs and viruses share several properties related to their structure and the biogenesis machinery in cells. EVs from virus-infected cells play a key role in virus spread and suppression using various loading molecules, such as viral proteins, host proteins, and microRNAs. However, it remains unclear how and why viruses regulate EV production inside host cells. The purpose of this study is to investigate the molecular mechanisms underlying EV production and their roles in Kaposi’s sarcoma-associated herpesvirus (KSHV)-infected cells. Here, we found that KSHV induced EV production in human endothelial cells via Rab- 27b upregulation. The suppression of Rab27b expression in KSHV-infected cells enhanced cell death by increasing autophagic flux and autolysosome formation. Our results indicate that Rab27b regulates EV biogenesis to promote cell survival and persistent viral infection during KSHV infection, thereby providing novel insights into the crucial role of Rab- 27b in the KSHV life cycle.

Journal of Microbiology : Journal of Microbiology
TOP