Research Support, Non-U.S. Gov'ts
- Auxin Production and Detection of the Gene Coding for the Auxin Efflux Carrier (AEC) Protein in Paenibacillus polymyxa
-
Fabio Faria Da Mota , Eliane Aparecida Gomes , Lucy Seldin
-
J. Microbiol. 2008;46(3):257-264. Published online July 5, 2008
-
DOI: https://doi.org/10.1007/s12275-007-0245-x
-
-
37
View
-
0
Download
-
30
Scopus
-
Abstract
-
Different species of Paenibacillus are considered to be plant growth-promoting rhizobacteria (PGPR) due to their ability to repress soil borne pathogens, fix atmospheric nitrogen, induce plant resistance to diseases and/or produce plant growth-regulating substances such as auxins. Although it is known that indole-3-acetic acid (IAA) is the primary naturally occurring auxin excreted by Paenibacillus species, its transport mechanisms (auxin efflux carriers) have not yet been characterized. In this study, the auxin production of P. polymyxa and P. graminis, which are prevalent in the rhizospheres of maize and sorghum sown in Brazil, was evaluated. In addition, the gene encoding the Auxin Efflux Carrier (AEC) protein from P. polymyxa DSM36T was sequenced and used to determine if various strains of P. polymyxa and P. graminis possessed this gene. Each of the 68 P. polymyxa strains evaluated in this study was able to produce IAA, which was produced at concentrations varying from 1 to 17 μg/ml. However, auxin production was not detected in any of the 13 P. graminis strains tested in this study. Different primers were designed for the PCR amplification of the gene coding for the AEC in P. polymyxa, and the predicted protein of 319 aa was homologous to AEC from Bacillus amyloliquefaciens, B. licheniformis, and B. subtilis. However, no product was observed when these primers were used to amplify the genomic DNA of seven strains of P. graminis, which suggests that this gene is not present in this species. Moreover, none of the P. graminis genomes tested were homologous to the gene coding for AEC, whereas all of the P. polymyxa genomes evaluated were. This is the first study to demonstrate that the AEC protein is present in P. polymyxa genome.
- Evaluation of the Diversity of Cyclodextrin-Producing Paenibacillus graminis Strains Isolated from Roots and Rhizospheres of Different Plants by Molecular Methods
-
Renata Estebanez Vollu , Rafael Fogel , Silvia Cristina Cunha dos Santos , Fabio Faria da Mota , Lucy Seldin
-
J. Microbiol. 2006;44(6):591-599.
-
DOI: https://doi.org/2469 [pii]
-
-
Abstract
-
To address the diversity of cyclodextrin-producing P. graminis strains isolated from wheat roots and rhizospheres of maize and sorghum sown in Australia, Brazil, and France, restriction fragment length polymorphism analysis of part of genes encoding RNA polymerase (rpoB-RFLP) and DNA gyrase subunit B (gyrB-RFLP) was used to produce genetic fingerprints. A phylogenetic tree based on rpoB gene sequences was also constructed. The isolates originated from Brazil could be separated from those from Australia and France, when data from the rpoB-based phylogenetic tree or gyrB-RFLP were considered. These analyses also allowed the separation of all P. graminis strains studied here into four clusters; one group formed by the strains GJK201 and RSA19T, second group formed by the strains MC22.02 and MC04.21, third group formed by the strains TOD61, TOD 221, TOD302, and TOD111, and forth group formed by all strains isolated from plants sown in Cerrado soil, Brazil. As this last group was formed by strains isolated from sorghum and maize sown in the same soil (Cerrado) in Brazil, our results suggest that the diversity of these P. graminis strains is more affected by the soil type than the plant from where they
<br>have been isolated.