Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
81 "Pathogen"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Gut Microbiota Dysbiosis Facilitates Susceptibility to Bloodstream Infection
Xiaomin Lin, Chun Lin, Xin Li, Fen Yao, Xiaoling Guo, Meimei Wang, Mi Zeng, Yumeng Yuan, Qingdong Xie, Xudong Huang, Xiaoyang Jiao
J. Microbiol. 2024;62(12):1113-1124.   Published online December 2, 2024
DOI: https://doi.org/10.1007/s12275-024-00190-5
  • 60 View
  • 0 Download
AbstractAbstract
To study the role of intestinal flora in the development of bloodstream infections (BSIs). 42 patients and 19 healthy controls (HCs) were screened into the study and their intestinal flora was measured by 16S rRNA gene sequencing. The bacterial diversity was significantly lower in the BSI group compared with that in the HCs (P < 0.001), and beta diversity was significantly differentiated between the two groups (PERMANOVA, P = 0.001). The four keystone species [Roseburia, Faecalibacterium, Prevotella, and Enterococcus (LDA > 4)] differed significantly between the two groups. Dysbiosis of fecal microbial ecology is a common condition present in patients with BSI. The proliferation of certain pathogens or reduction of SCFA-producing bacteria would cause susceptibility to BSI.
Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov., Isolated from Freshwater and Soil
Yong-Seok Kim , Eun-Mi Hwang , Chang-Myeong Jeong , Chang-Jun Cha
J. Microbiol. 2023;61(10):891-901.   Published online October 18, 2023
DOI: https://doi.org/10.1007/s12275-023-00081-1
  • 71 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract
Two novel bacterial strains CJ74T and CJ75T belonging to the genus Flavobacterium were isolated from freshwater of Han River and ginseng soil, South Korea, respectively. Strain CJ74T was Gram-stain-negative, aerobic, rod-shaped, non-motile, and non-flagellated, and did not produce flexirubin-type pigments. Strain CJ75T was Gram-stain-negative, aerobic, rodshaped, motile by gliding, and non-flagellated, and produced flexirubin-type pigments. Both strains were shown to grow optimally at 30 °C in the absence of NaCl on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ74T and CJ75T belonged to the genus Flavobacterium and were most closely related to Flavobacterium niveum TAPW14T and Flavobacterium foetidum CJ42T with 96.17% and 97.29% 16S rRNA sequence similarities, respectively. Genomic analyses including the reconstruction of phylogenomic tree, average nucleotide identity, and digital DNA-DNA hybridization suggested that they were novel species of the genus Flavobacterium. Both strains contained menaquinone 6 (MK-6) as the primary respiratory quinone and phosphatidylethanolamine as a major polar lipid. The predominant fatty acids of both strains were iso-C15:0 and summed feature 3 ( C16:1 ω7c and/or C16: 1 ω6c). Based on the polyphasic taxonomic study, strains CJ74T and CJ75T represent novel species of the genus Flavobacterium, for which names Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov. are proposed, respectively. The type strains are CJ74T (=KACC 19819T =JCM 32889T) and CJ75T (=KACC 23149T =JCM 36132T).

Citations

Citations to this article as recorded by  
  • Discovery of two novel Flavobacterium species with potential for complex polysaccharide degradation
    Xu-Dong Lian, Yong Guan, Yue Jiang, Dong-Heui Kwak, Mi-Kyung Lee, Zhun Li
    Scientific Reports.2025;[Epub]     CrossRef
  • Ammonia-oxidizing activity and microbial structure of ammonia-oxidizing bacteria, ammonia-oxidizing archaea and complete ammonia oxidizers in biofilm systems with different salinities
    Haojie Qiu, Weihua Zhao, Yingying Qin, Yanyan Wang, Meng Bai, Shaoqing Su, Chao Wang, Zhisheng Zhao
    Bioresource Technology.2025; : 132248.     CrossRef
  • Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. Within the OM60/NOR5 Clade, Isolated from Seawater, and Emended Description of the Genus Congregibacter
    Hyeonsu Tak, Miri S. Park, Hyerim Cho, Yeonjung Lim, Jang-Cheon Cho
    Journal of Microbiology.2024; 62(9): 739.     CrossRef
  • Flavobacterium rivulicola sp. nov., Isolated from a Freshwater Stream
    Sumin Kim, Miri S. Park, Ilnam Kang, Jang-Cheon Cho
    Current Microbiology.2024;[Epub]     CrossRef
  • Validation List no. 218. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
Editorial
Editorial] Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
Jin-Won Lee
J. Microbiol. 2023;61(3):273-276.   Published online April 3, 2023
DOI: https://doi.org/10.1007/s12275-023-00036-6
  • 78 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Bacteria employ a diverse array of cellular regulatory mechanisms to successfully adapt and thrive in ever-changing environments, including but not limited to temperature changes, fluctuations in nutrient availability, the presence or absence of electron acceptors such as oxygen, the availability of metal ions crucial for enzyme activity, and the existence of antibiotics. Bacteria can virtually modulate any step of gene expression from transcr!ptional initiation to posttranslational modification of a protein for the control of cellular processes. Furthermore, one gene regulator often controls another in a complex gene regulatory network. Thus, it is not easy to fully understand the intricacies of bacterial regulatory mechanisms in various environments. In this special issue, while acknowledging the challenge of covering all aspects of bacterial regulatory mechanisms across diverse environments, seven review articles are included to provide insight into the recent progress in understanding such mechanisms from different perspectives: positive regulatory mechanisms by secondary messenger (cAMP receptor protein), two-component signal transduction mechanisms (Rcs and Cpx), diverse regulatory mechanisms by a specific environmental factor in specific bacteria (oxygen availability in Mycobacterium and manganese ion availability in Salmonella), diverse regulatory mechanisms by a specific environmental factor (temperature and antibiotics), and regulatory mechanisms by antibiotics in cell wall synthesis. Bacteria, as ubiquitous organisms that can be found in almost every environment, carry out complex cellular processes that allow them to survive and thrive in a variety of different conditions despite their small size and relative simplicity. One of the key factors that allows bacteria to carry out these complex processes is their ability to regulate gene expression through various mechanisms. Gene expression is a fundamental biological process by which the genetic information encoded in a gene is transcribed into an RNA molecule and subsequently translated into a functional gene product, often a protein. Furthermore, the activity levels of proteins may further be altered by posttranslational modification. Regulation of gene expression refers to the control of the amount and timing of gene expression, and thus it can be divided into transcr!ptional, translational, and posttranslational levels.

Citations

Citations to this article as recorded by  
  • The PhoBR two-component system upregulates virulence in Aeromonas dhakensis C4–1
    Wei Feng, Xuesong Li, Nuo Yang, Lixia Fan, Guiying Guo, Jun Xie, Xiuqing Cai, Yuqi Meng, Jifeng Zeng, Yu Han, Jiping Zheng
    Aquaculture.2025; 595: 741665.     CrossRef
  • Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance
    Washu Dev, Fahmida Sultana, Hongge Li, Daowu Hu, Zhen Peng, Shoupu He, Haobo Zhang, Muhammad Waqas, Xiaoli Geng, Xiongming Du
    Plant Science.2025; 352: 112390.     CrossRef
  • PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in Escherichia coli
    Byoung Jun Choi, Umji Choi, Dae-Beom Ryu, Chang-Ro Lee, Mehrad Hamidian, You-Hee Cho
    mSystems.2024;[Epub]     CrossRef
  • Navigating the signaling landscape of Ralstonia solanacearum: a study of bacterial two-component systems
    Mohit Yadav, Janhavi Sathe, Valentina Teronpi, Aditya Kumar
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
Review
The “Cins” of Our Fathers: Rejuvenated Interest in Colicins to Combat Drug Resistance
Sumudu Upatissa , Robert J. Mitchell
J. Microbiol. 2023;61(2):145-158.   Published online February 8, 2023
DOI: https://doi.org/10.1007/s12275-023-00023-x
  • 55 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
With the growing threat of antibiotic resistance, researchers around the globe are seeking alternatives to stem bacterial pathogenesis. One such alternative is bacteriocins, proteins produced by bacterial species to inhibit the growth and viability of related bacterial species. With their diverse mechanisms, which include pore formation and nuclease activities, and narrow spectrum of activities, which limit their impact to only certain bacterial species, unlike many chemical antibiotics, bacteriocins offer intriguing possibilities to selectively control individual bacterial populations. Within this review, therefore, we highlight current research exploring the application of colicins and microcins, a subset of bacteriocins, with an emphasis on their activities against drug-resistant pathogens, both in in vitro and in vivo settings.

Citations

Citations to this article as recorded by  
  • Isolation, Genomics-Based and Biochemical Characterization of Bacteriocinogenic Bacteria and Their Bacteriocins, Sourced from the Gastrointestinal Tract of Meat-Producing Pigs
    Ester Sevillano, Irene Lafuente, Nuria Peña, Luis M. Cintas, Estefanía Muñoz-Atienza, Pablo E. Hernández, Juan Borrero
    International Journal of Molecular Sciences.2024; 25(22): 12210.     CrossRef
  • Intelligent Biological Networks: Improving Anti-Microbial Resistance Resilience through Nutritional Interventions to Understand Protozoal Gut Infections
    Avinash V. Karpe, David J. Beale, Cuong D. Tran
    Microorganisms.2023; 11(7): 1800.     CrossRef
  • Pairing Colicins B and E5 with Bdellovibrio bacteriovorus To Eradicate Carbapenem- and Colistin-Resistant Strains of Escherichia coli
    Sumudu Upatissa, Wonsik Mun, Robert J. Mitchell, Minsu Kim
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Bacteriocin-Producing Escherichia coli Q5 and C41 with Potential Probiotic Properties: In Silico, In Vitro, and In Vivo Studies
    Veronika S. Mihailovskaya, Dmitry A. Sutormin, Marina O. Karipova, Anna B. Trofimova, Victor A. Mamontov, Konstantin Severinov, Marina V. Kuznetsova
    International Journal of Molecular Sciences.2023; 24(16): 12636.     CrossRef
Journal Articles
Construction of high-density transposon mutant library of Staphylococcus aureus using bacteriophage ϕ11
Wonsik Lee
J. Microbiol. 2022;60(12):1123-1129.   Published online November 24, 2022
DOI: https://doi.org/10.1007/s12275-022-2476-2
  • 59 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract
Transposon mutant libraries are an important resource to study bacterial metabolism and pathogenesis. The fitness analysis of mutants in the libraries under various growth conditions provides important clues to study the physiology and biogenesis of structural components of a bacterial cell. A transposon library in conjunction with next-generation sequencing techniques, collectively named transposon sequencing (Tnseq), enables high-throughput genome profiling and synthetic lethality analysis. Tn-seq has also been used to identify essential genes and to study the mode of action of antibacterials. To construct a high-density transposon mutant library, an efficient delivery system for transposition in a model bacterium is essential. Here, I describe a detailed protocol for generating a high-density phage-based transposon mutant library in a Staphylococcus aureus strain, and this protocol is readily applicable to other S. aureus strains including USA300 and MW2.

Citations

Citations to this article as recorded by  
  • Optimizing phage-based mutant recovery and minimizing heat effect in the construction of transposon libraries in Staphylococcus aureus
    Sally W. Yousief, Nader Abdelmalek, Bianca Paglietti
    Scientific Reports.2024;[Epub]     CrossRef
Microbial metabolic responses and CO2 emissions differentiated by soil water content variation in subarctic tundra soils
Dockyu Kim , Namyi Chae , Mincheol Kim , Sungjin Nam , Tai Kyoung Kim , Ki-Tea Park , Bang Yong Lee , Eungbin Kim , Hyoungseok Lee
J. Microbiol. 2022;60(12):1130-1138.   Published online November 24, 2022
DOI: https://doi.org/10.1007/s12275-022-2378-3
  • 60 View
  • 0 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract
Recent rapid air temperature increases across the northernlatitude tundra have prolonged permafrost thawing and snow melting periods, resulting in increased soil temperature (Ts) and volumetric soil water content (SWC). Under prolonged soil warming at 8°C, Alaskan tundra soils were incubated in a microcosm system and examined for the SWC differential influence on the microbial decomposition activity of large molecular weight (MW) humic substances (HS). When one microcosm soil (AKC1-1) was incubated at a constant SWC of 41% for 90 days (T = 90) and then SWC was gradually decreased from 41% to 29% for another T = 90, the initial HS was partly depolymerized. In contrast, in AKC1-2 incubated at a gradually decreasing SWC from the initial 32% to 10% for T = 90 and then increasing to 27% for another T = 90, HS depolymerization was undetected. Overall, the microbial communities in AKC1-1 could maintain metabolic activity at sufficient and constant SWC during the initial T = 90 incubation. In contrast, AKC1-2 microbes may have been damaged by drought stress during the drying SWC regimen, possibly resulting in the loss of HS decomposition activity, which did not recover even after re-wetting to an optimal SWC range (20–40%). After T = 90, the CO2 production in both treatments was attributed to the increased decomposition of small-MW organic compounds (including aerobic HS-degradative products) within an optimal SWC range. We expect this study to provide new insights into the early effects of warming- and topography-induced SWC variations on the microbial contribution to CO2 emissions via HS decomposition in northern-latitude tundra soil.

Citations

Citations to this article as recorded by  
  • Unidirectional freeze–thaw redistributes water and amplifies soil microbial heterogeneity in a mecrocosm experiment
    Huimin Liu, Yaxian Hu, Yuan Song, Xianwen Li, Xiaorong Wei
    Geoderma.2025; 453: 117126.     CrossRef
  • Analysis of CO2 Emission from Urban Soils of the Kola Peninsula (European Arctic)
    M. V. Korneykova, V. I. Vasenev, N. V. Saltan, M. V. Slukovskaya, A. S. Soshina, M. S. Zavodskikh, Yu. L. Sotnikova, A. V. Dolgikh
    Eurasian Soil Science.2023; 56(11): 1653.     CrossRef
  • Analysis of CO2 Emission by Urban Soils under the Conditions of the Kola North
    M. V. Korneykova, V. I. Vasenev, N. V. Saltan, M. V. Slukovskaya, A. S. Soshina, M. S. Zavodskikh, Y. L. Sotnikova, A. V. Dolgikh
    Почвоведение.2023; (11): 1385.     CrossRef
Correlation between fat accumulation and fecal microbiota in crossbred pigs
Xin Li , Mengyu Li , Jinyi Han , Chuang Liu , Xuelei Han , Kejun Wang , Ruimin Qiao , Xiu-Ling Li , Xin-Jian Li
J. Microbiol. 2022;60(11):1077-1085.   Published online September 9, 2022
DOI: https://doi.org/10.1007/s12275-022-2218-5
  • 67 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract
Backfat thickness (BF) is an important indicator of fat deposition capacity and lean meat rate in pigs and is very important in porcine genetics and breeding. Intestinal microbiota plays a key role in nutrient digestion and utilization with a profound impact on fat deposition of livestock animals. To investigate the relationship between the pig gut microbiome and BF, 20 low-BF (L-BF) and 20 high-BF (H-BF) pigs were selected as two groups from Yunong Black pigs in the present study. Fecal samples from pigs were analyzed for microbial diversity, composition, and predicted functionality using 16S rRNA gene sequencing. The results showed that there were significant differences in microbial β diversity between the two groups. LEfSe analysis revealed a number of bacterial features being differentially enriched in either L-BF or H-BF pigs. Spearman correlation analysis identified the abundance of Oscillospira, Peptococcus, and Bulleidia were significantly positive correlations with BF (P < 0.05), while Sutterella and Bifidobacterium were significantly negatively correlated with BF (P < 0.05). Importantly, the bacteria significantly positively correlated with BF mainly belong to Clostridium, which can ferment host-indigestible plant polysaccharides into shortchain fatty acid (SCFA) and promote fat synthesis and deposition. Predictive functional analysis indicated that the pathway abundance of cell motility and glycan biosynthesis were significantly widespread in the microbiota of the H-BF group. The results of this study will be useful for the development of microbial biomarkers for predicting and improving porcine BF, as well as for the investigation of targets for dietary strategies.

Citations

Citations to this article as recorded by  
  • Carboxymethyl chitosan-dialdehyde glucan/polydopamine carrier targeted delivery Bacillus subtilis on enhancing oral utilization and intestinal colonization in mice
    Lulu Chu, Luyu Xie, Bingzhi Chen, Yuji Jiang, Wenjie Wang
    International Journal of Biological Macromolecules.2024; 280: 135574.     CrossRef
  • Impact of Early Weaning on Development of the Swine Gut Microbiome
    Benoit St-Pierre, Jorge Yair Perez Palencia, Ryan S. Samuel
    Microorganisms.2023; 11(7): 1753.     CrossRef
  • Comparison of Conjunctival Sac Microbiome between Low and High Myopic Eyes
    Kang Xiao, Zhengyu Chen, Qin Long
    Journal of Microbiology.2023; 61(5): 571.     CrossRef
The novel antifungal agent AB-22 displays in vitro activity against hyphal growth and biofilm formation in Candida albicans and potency for treating systemic candidiasis
Kyung-Tae Lee , Dong-Gi Lee , Ji Won Choi , Jong-Hyun Park , Ki Duk Park , Jong-Seung Lee , Yong-Sun Bahn
J. Microbiol. 2022;60(4):438-443.   Published online March 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2016-0
  • 44 View
  • 0 Download
  • 1 Web of Science
  • 1 Scopus
AbstractAbstract
Systemic candidiasis, which is mainly caused by Candida albicans, is a serious acute fungal infection in the clinical setting. In a previous study, we reported that compound 22h (designated as AB-22 in this study), a vinyl sulfate compound, is a fast-acting fungicidal agent against a broad spectrum of fungal pathogens. In this study, we aimed to further analyze the in vitro and in vivo efficacy of AB-22 against filamentation, biofilm formation, and virulence of C. albicans. Under in vitro hyphal growth-inducing condition, AB-22 effectively inhibited germ tube formation and hyphal growth, which are required for the initiation of biofilm formation. Indeed, AB-22 significantly suppressed C. albicans biofilm formation in a dose-dependent manner. Moreover, AB-22 treatment inhibited the normal induction of ALS3, HWP1, and ECE1, which are all required for hyphal transition in C. albicans. Furthermore, AB-22 treatment increased the survival of mice systemically infected with C. albicans. In conclusion, in addition to its fungicidal activity, AB-22 inhibits filamentation and biofilm formation in C. albicans, which could collectively contribute to its potent in vivo efficacy against systemic candidiasis.
Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
Jaeyeong Park , Eunkyoung Shin , Ji-Hyun Yeom , Younkyung Choi , Minju Joo , Minho Lee , Je Hyeong Kim , Jeehyeon Bae , Kangseok Lee
J. Microbiol. 2022;60(1):128-136.   Published online December 29, 2021
DOI: https://doi.org/10.1007/s12275-022-1620-3
  • 140 View
  • 0 Download
  • 14 Web of Science
  • 15 Crossref
AbstractAbstract
Acinetobacter baumannii causes multidrug resistance, leading to fatal infections in humans. In this study, we showed that Lys AB2 P3-His–a hexahistidine-tagged form of an antimicrobial peptide (AMP) loaded onto DNA aptamer-functionalized gold nanoparticles (AuNP-Apt)–can effectively inhibit A. baumannii infection in mice. When A. baumannii-infected mice were intraperitoneally injected with AuNP-Apt loaded with Lys AB2 P3-His, a marked reduction in A. baumannii colonization was observed in the mouse organs, leading to prominently increased survival time and rate of the mice compared to those of the control mice treated with AuNP-Apt or Lys AB2 P3-His only. This study shows that AMPs loaded onto AuNP-Apt could be an effective therapeutic tool against infections caused by multidrug-resistant pathogenic bacteria in humans.

Citations

Citations to this article as recorded by  
  • Challenges and Emerging Molecular Approaches in Combating Antimicrobial Resistance
    Gene Philip Levee Ynion, Christian Jay Rosal, Arvin Zulueta, Angelo Ordanel, Christopher Marlowe Caipang
    Journal of Bacteriology and Virology.2024; 54(1): 12.     CrossRef
  • Gold Nanoparticles and Antimicrobial Peptides: A Novel Combination
    Şule Balcı, Bengü Ergüden
    ChemistrySelect.2024;[Epub]     CrossRef
  • Aptamers: A Cutting-Edge Approach for Gram-Negative Bacterial Pathogen Identification
    María Guadalupe Córdova-Espinoza, Rosa González-Vázquez, Rolando Rafik Barron-Fattel, Raquel Gónzalez-Vázquez, Marco Antonio Vargas-Hernández, Exsal Manuel Albores-Méndez, Ana Laura Esquivel-Campos, Felipe Mendoza-Pérez, Lino Mayorga-Reyes, María Angélica
    International Journal of Molecular Sciences.2024; 25(2): 1257.     CrossRef
  • Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections
    Kamila Botelho Sampaio de Oliveira, Michel Lopes Leite, Nadielle Tamires Moreira Melo, Letícia Ferreira Lima, Talita Cristina Queiroz Barbosa, Nathalia Lira Carmo, Douglas Afonso Bittencourt Melo, Hugo Costa Paes, Octávio Luiz Franco
    Antibiotics.2024; 13(11): 1042.     CrossRef
  • Optimizing Treatment for Carbapenem-Resistant Acinetobacter baumannii Complex Infections: A Review of Current Evidence
    Seong Jin Choi, Eu Suk Kim
    Infection & Chemotherapy.2024; 56(2): 171.     CrossRef
  • Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review
    Fatemeh Karimzadeh, Elahe Soltani Fard, Akram Nadi, Rahim Malekzadeh, Fatemeh Elahian, Seyed Abbas Mirzaei
    Journal of Materials Chemistry B.2024; 12(25): 6033.     CrossRef
  • Colistin Resistance Mechanism and Management Strategies of Colistin-Resistant Acinetobacter baumannii Infections
    Md Minarul Islam, Da Eun Jung, Woo Shik Shin, Man Hwan Oh
    Pathogens.2024; 13(12): 1049.     CrossRef
  • Progress in Programmable DNA-Aided Self-Assembly of the Master Frame of a Drug Delivery System
    Gary Q. Yang, Weibin Cai, Zhiwen Zhang, Yujun Wang
    ACS Applied Bio Materials.2023; 6(12): 5125.     CrossRef
  • Neglected Zoonotic Diseases: Advances in the Development of Cell-Penetrating and Antimicrobial Peptides against Leishmaniosis and Chagas Disease
    Sara M. Robledo, Silvia Pérez-Silanes, Celia Fernández-Rubio, Ana Poveda, Lianet Monzote, Víctor M. González, Paloma Alonso-Collado, Javier Carrión
    Pathogens.2023; 12(7): 939.     CrossRef
  • Applications and Challenges of Bacteriostatic Aptamers in the Treatment of Common Pathogenic Bacteria Infections
    Diandian Li, Yuan Su, Jie Li, Rong Liu, Bing Fang, Jingjing He, Wentao Xu, Longjiao Zhu
    Biomacromolecules.2023; 24(11): 4568.     CrossRef
  • Promising Acinetobacter baumannii Vaccine Candidates and Drug Targets in Recent Years
    Yong Chiang Tan, Chandrajit Lahiri
    Frontiers in Immunology.2022;[Epub]     CrossRef
  • Advances and Perspective on Antimicrobial Nanomaterials for Biomedical Applications
    Preeti Garg, Prerna Attri, Rohit Sharma, Moondeep Chauhan, Ganga Ram Chaudhary
    Frontiers in Nanotechnology.2022;[Epub]     CrossRef
  • Aptamer Decorated Emodin Nanoparticles-Assisted Delivery of Dermcidin-Derived Peptide DCD-1L: Photoactive Bio-Theragnostic Agent for Enterococcus Faecalis Biofilm Destruction
    Maryam Pourhajibagher, Abbas Bahador
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Development of DNA aptamers specific for small therapeutic peptides using a modified SELEX method
    Jaemin Lee, Minkyung Ryu, Dayeong Bae, Hong-Man Kim, Seong-il Eyun, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(7): 659.     CrossRef
  • Aptamer decorated emodin nanoparticles-assisted delivery of dermcidin-derived peptide DCD-1L: Photoactive bio-theragnostic agent for Enterococcus faecalis biofilm destruction
    Maryam Pourhajibagher, Abbas Bahador
    Photodiagnosis and Photodynamic Therapy.2022; 39: 103020.     CrossRef
Genetic diversity and population structure of the amylolytic yeast Saccharomycopsis fibuligera associated with Baijiu fermentation in China
Ju-Wei Wang , Pei-Jie Han , Da-Yong Han , Sen Zhou , Kuan Li , Peng-Yu He , Pan Zhen , Hui-Xin Yu , Zhen-Rong Liang , Xue-Wei Wang , Feng-Yan Bai
J. Microbiol. 2021;59(8):753-762.   Published online July 5, 2021
DOI: https://doi.org/10.1007/s12275-021-1115-7
  • 45 View
  • 0 Download
  • 15 Web of Science
  • 14 Crossref
AbstractAbstract
The amylolytic yeast Saccharomycopsis fibuligera is a predominant species in starters and the early fermentation stage of Chinese liquor (Baijiu). However, the genetic diversity of the species remains largely unknown. Here we sequenced the genomes of 97 S. fibuligera strains from different Chinese Baijiu companies. The genetic diversity and population structure of the strains were analyzed based on 1,133 orthologous genes and the whole genome single nucleotide polymorphisms (SNPs). Four main lineages were recognized. One lineage contains 60 Chinese strains which are exclusively homozygous with relatively small genome sizes (18.55–18.72 Mb) and low sequence diversity. The strains clustered in the other three lineages are heterozygous with larger genomes (21.85–23.72 Mb) and higher sequence diversity. The genomes of the homozygous strains showed nearly 100% coverage with the genome of the reference strain KPH12 and the sub-genome A of the hybrid strain KJJ81 at the above 98% sequence identity level. The genomes of the heterozygous strains showed nearly 80% coverage with both the sub-genome A and the whole genome of KJJ81, suggesting that the Chinese heterozygous strains are also hybrids with nearly 20% genomes from an unidentified source. Eighty-three genes were found to show significant copy number variation between different lineages. However, remarkable lineage specific variations in glucoamylase and α-amylase activities and growth profiles in different carbon sources and under different environmental conditions were not observed, though strains exhibiting relatively high glucoamylase activity were mainly found from the homozygous lineage.

Citations

Citations to this article as recorded by  
  • Isolation of Saccharomycopsis species from plant material
    Carmen Dost, Florian Michling, Davies Kaimenyi, Mareike Rij, Jürgen Wendland
    Microbiological Research.2024; 283: 127691.     CrossRef
  • Microbial enzymes: the bridge between Daqu flavor and microbial communities
    Zelong Zhong, Tianyi Liu, Kaiping He, Min Zhong, Xiaoxue Chen, Yansong Xue, Beizhong Han, Diqiang Wang, Jun Liu
    Food Innovation and Advances.2024; 3(4): 426.     CrossRef
  • Exploring the heterogeneity of community and function and correspondence of “species-enzymes” among three types of Daqu with different fermentation peak-temperature via high-throughput sequencing and metagenomics
    Ying Huang, Dong Li, Yu Mu, Zhiyu Zhu, Yuzhang Wu, Qi Qi, Yingchun Mu, Wei Su
    Food Research International.2024; 176: 113805.     CrossRef
  • Deciphering the core microbes and their interactions in spontaneous Baijiu fermentation: A comprehensive review
    Jiamu Kang, Xiaoning Huang, Rengshu Li, Yuandi Zhang, Xiao-Xue Chen, Bei-Zhong Han
    Food Research International.2024; 188: 114497.     CrossRef
  • Correlational analysis of physicochemical indexes, microbial communities, and volatile components in light-flavor Daqu from north and south regions of China
    Qi Yu, Feiyan Mou, Junwen Xiao, Cheng Zhan, Liang Li, Xu Chang, Xiaoyuan Dong, Maobin Chen, Xinrui Wang, Mei Chen, Shangling Fang
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Dynamic changes in volatile profiles and bacterial communities during natural fermentation of Mei yu, traditional Chinese fermented fish pieces
    Hongmei Yin, Qiang Hong, Xiang Yu, Hui Wang, Xiaodan Shi, Wei Liu, Tao Yuan, Zongcai Tu
    Food Research International.2024; 194: 114882.     CrossRef
  • Exploring the relationship between GuaYi levels and microbial-metabolic dynamics in Daqu
    Boyang Xu, Shanshan Xu, Hao Zhou, Ruijuan Wang, Chao Jiang, Dongdong Mu, Xuefeng Wu, Xiaolei Wu, Shaotong Jiang, Xingjiang Li
    Food Bioscience.2024; 60: 104347.     CrossRef
  • Exploring the Role of Active Functional Microbiota in Flavor Generation by Integrated Metatranscriptomics and Metabolomics during Niulanshan Baijiu Fermentation
    Yuanyuan Pan, Ying Wang, Wenjun Hao, Sen Zhou, Chengbao Duan, Qiushi Li, Jinwang Wei, Gang Liu
    Foods.2023; 12(22): 4140.     CrossRef
  • Dynamic changes and correlations of microbial communities, physicochemical properties, and volatile metabolites during Daqu fermentation of Taorong-type Baijiu
    Yanbo Liu, Haideng Li, Shumei Dong, Zhou Zhou, Zhenke Zhang, Runna Huang, Suna Han, Jianguang Hou, Chunmei Pan
    LWT.2023; 173: 114290.     CrossRef
  • The differences in carbohydrate utilization ability between six rounds of Sauce-flavor Daqu
    Qi Zhu, Liangqiang Chen, Zheng Peng, Qiaoling Zhang, Wanqiu Huang, Fan Yang, Guocheng Du, Juan Zhang, Li Wang
    Food Research International.2023; 163: 112184.     CrossRef
  • Microbial Community Affects Daqu Quality and the Production of Ethanol and Flavor Compounds in Baijiu Fermentation
    Pei-Jie Han, Lu-Jun Luo, Ying Han, Liang Song, Pan Zhen, Da-Yong Han, Yu-Hua Wei, Xin Zhou, Zhang Wen, Jun-Zhi Qiu, Feng-Yan Bai
    Foods.2023; 12(15): 2936.     CrossRef
  • Comparison of physicochemical characteristics and microbiome profiles of low-temperature Daqu with and without adding tartary buckwheat
    Jiamu Kang, Liangliang Jia, Zhongxiao Zhang, Min Zhang, Xiaoning Huang, Xiaoxue Chen, Bei-Zhong Han
    Food Bioscience.2022; 49: 101931.     CrossRef
  • What Are the Main Factors That Affect the Flavor of Sauce-Aroma Baijiu
    Jiao Niu, Shiqi Yang, Yi Shen, Wei Cheng, Hehe Li, Jinyuan Sun, Mingquan Huang, Baoguo Sun
    Foods.2022; 11(21): 3534.     CrossRef
  • Insights into the bacterial, fungal, and phage communities and volatile profiles in different types of Daqu
    Jiamu Kang, Xiaoxue Chen, Bei-Zhong Han, Yansong Xue
    Food Research International.2022; 158: 111488.     CrossRef
Isolation of a novel strain, Sphingorhabdus sp. YGSMI21 and characterization of its enantioselective epoxide hydrolase activity
Jung-Hee Woo , Hae-Seon Kim , Nyun-Ho Park , Ho Young Suk
J. Microbiol. 2021;59(7):675-680.   Published online June 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1023-x
  • 47 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Sphingorhabdus sp. YGSMI21, a novel microbial strain with an enantioselective epoxide hydrolase activity, was isolated from tidal samples contaminated by accidental oil spills subjected to enriched culture with polycyclic aromatic hydrocarbon. This strain was able to optically decompose (R)-styrene oxide (SO) and showed 100% optical purity. In addition, it showed a good enantioselectivity for the derivatives of (S)- SO, (S)-2-chlorostyrene oxide (CSO), (S)-3-CSO and (S)-4- CSO. For (S)-2-CSO, (S)-3-CSO and (S)-4-CSO, 99.9%ee was obtained with the yield of 26.2%, 24.8%, and 11.0%, respectively, when using 10 mg cells of Sphingorhabdus sp. YGSMI21 at pH 8.0 with 4 mM racemic substrates at pH 8.0 and 25°C. The values obtained in this study for (S)-2-CSO, particularly the yield of 26.2%, is noteworthy, considering that obtaining an enantiomerically pure form is difficult. Taken together, Sphingorhabdus sp. YGSMI21 can be regarded as a wholecell biocatalyst in the production of various (S)-CSO with the chlorine group at a different position.

Citations

Citations to this article as recorded by  
  • Epoxide Hydrolases: Multipotential Biocatalysts
    Marek Bučko, Katarína Kaniaková, Helena Hronská, Peter Gemeiner, Michal Rosenberg
    International Journal of Molecular Sciences.2023; 24(8): 7334.     CrossRef
  • Effects of submerged macrophytes (Elodea nuttallii) on water quality and microbial communities of largemouth bass (Micropterus salmoides) ponds
    Zhijuan Nie, Zhaowei Zheng, Haojun Zhu, Yi Sun, Jun Gao, Jiancao Gao, Pao Xu, Gangchuan Xu
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Description of Polaribacter batillariae sp. nov., Polaribacter cellanae sp. nov., and Polaribacter pectinis sp. nov., novel bacteria isolated from the gut of three types of South Korean shellfish
    Su-Won Jeong, Jeong Eun Han, June-Young Lee, Ji-Ho Yoo, Do-Yeon Kim, In Chul Jeong, Jee-Won Choi, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Euon Jung Tak, Hojun Sung, Hyun Sik Kim, Pil Soo Kim, Dong-Wook Hyun, Jin-Woo Bae
    Journal of Microbiology.2022; 60(6): 576.     CrossRef
Effect of biostimulation and bioaugmentation on hydrocarbon degradation and detoxification of diesel-contaminated soil: a microcosm study
Patricia Giovanella , Lídia de Azevedo Duarte , Daniela Mayumi Kita , Valéria Maia de Oliveira , Lara Durães Sette
J. Microbiol. 2021;59(7):634-643.   Published online May 15, 2021
DOI: https://doi.org/10.1007/s12275-021-0395-2
  • 48 View
  • 0 Download
  • 5 Web of Science
  • 7 Crossref
AbstractAbstract
Soil contamination with diesel oil is quite common during processes of transport and storage. Bioremediation is considered a safe, economical, and environmentally friendly approach for contaminated soil treatment. In this context, studies using hydrocarbon bioremediation have focused on total petroleum hydrocarbon (TPH) analysis to assess process effectiveness, while ecotoxicity has been neglected. Thus, this study aimed to select a microbial consortium capable of detoxifying diesel oil and apply this consortium to the bioremediation of soil contaminated with this environmental pollutant through different bioremediation approaches. Gas chromatography (GC-FID) was used to analyze diesel oil degradation, while ecotoxicological bioassays with the bioindicators Artemia sp., Aliivibrio fischeri (Microtox), and Cucumis sativus were used to assess detoxification. After 90 days of bioremediation, we found that the biostimulation and biostimulation/ bioaugmentation approaches showed higher rates of diesel oil degradation in relation to natural attenuation (41.9 and 26.7%, respectively). Phytotoxicity increased in the biostimulation and biostimulation/bioaugmentation treatments during the degradation process, whereas in the Microtox test, the toxicity was the same in these treatments as that in the natural attenuation treatment. In both the phytotoxicity and Microtox tests, bioaugmentation treatment showed lower toxicity. However, compared with natural attenuation, this approach did not show satisfactory hydrocarbon degradation. Based on the microcosm experiments results, we conclude that a broader analysis of the success of bioremediation requires the performance of toxicity bioassays.

Citations

Citations to this article as recorded by  
  • Heavy fuel oil-contaminated soil remediation by individual and bioaugmentation-assisted phytoremediation with Medicago sativa and with cold plasma-treated M. sativa
    Jūratė Žaltauskaitė, Rimas Meištininkas, Austra Dikšaitytė, Laima Degutytė-Fomins, Vida Mildažienė, Zita Naučienė, Rasa Žūkienė, Kazunori Koga
    Environmental Science and Pollution Research.2024; 31(20): 30026.     CrossRef
  • Soil Corrosivity Under Natural Attenuation
    Larissa O. da Silva, Sara H. de Oliveira, Rafael G. C. da Silva, Magda R. S. Vieira, Ivanilda R. de Melo, Severino L. Urtiga Filho
    Materials Research.2024;[Epub]     CrossRef
  • Updating risk remediation-endpoints for petroleum-contaminated soils? A case study in the Ecuadorian Amazon region
    Daniel Hidalgo-Lasso, Karina García-Villacís, Jeaneth Urvina Ulloa, Darwin Marín Tapia, Patricio Gómez Ortega, Frederic Coulon
    Heliyon.2024; 10(9): e30395.     CrossRef
  • Recent advances in the development and applications of luminescent bacteria–based biosensors
    Yingying Li, Yuankun Zhao, Yiyang Du, Xuechun Ren, He Ding, Zhimin Wang
    Luminescence.2024;[Epub]     CrossRef
  • Oil biodegradation studies with an immobilized bacterial consortium in plant biomass for the construction of bench-scale bioreactor
    Rachel M. Ferreira, Bernardo D. Ribeiro, Danielle.M.A. Stapelfeldt, Rodrigo P. do Nascimento, Maria de.F.R. Moreira
    Cleaner Chemical Engineering.2023; 6: 100107.     CrossRef
  • Application of Luminescent Bacteria Bioassay in the Detection of Pollutants in Soil
    Kai Zhang, Meng Liu, Xinlong Song, Dongyu Wang
    Sustainability.2023; 15(9): 7351.     CrossRef
  • Salicylate or Phthalate: The Main Intermediates in the Bacterial Degradation of Naphthalene
    Vasili M. Travkin, Inna P. Solyanikova
    Processes.2021; 9(11): 1862.     CrossRef
Rab27b regulates extracellular vesicle production in cells infected with Kaposi’s sarcoma–associated herpesvirus to promote cell survival and persistent infection
Hyungtaek Jeon , Su-Kyung Kang , Myung-Ju Lee , Changhoon Park , Seung-Min Yoo , Yun Hee Kang , Myung-Shin Lee
J. Microbiol. 2021;59(5):522-529.   Published online April 20, 2021
DOI: https://doi.org/10.1007/s12275-021-1108-6
  • 47 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Extracellular vesicles (EVs) play a crucial role in cell-to-cell communication. EVs and viruses share several properties related to their structure and the biogenesis machinery in cells. EVs from virus-infected cells play a key role in virus spread and suppression using various loading molecules, such as viral proteins, host proteins, and microRNAs. However, it remains unclear how and why viruses regulate EV production inside host cells. The purpose of this study is to investigate the molecular mechanisms underlying EV production and their roles in Kaposi’s sarcoma-associated herpesvirus (KSHV)-infected cells. Here, we found that KSHV induced EV production in human endothelial cells via Rab- 27b upregulation. The suppression of Rab27b expression in KSHV-infected cells enhanced cell death by increasing autophagic flux and autolysosome formation. Our results indicate that Rab27b regulates EV biogenesis to promote cell survival and persistent viral infection during KSHV infection, thereby providing novel insights into the crucial role of Rab- 27b in the KSHV life cycle.

Citations

Citations to this article as recorded by  
  • Engineered small extracellular vesicles as a novel platform to suppress human oncovirus-associated cancers
    Iman Owliaee, Mehran khaledian, Armin Khaghani Boroujeni, Ali Shojaeian
    Infectious Agents and Cancer.2023;[Epub]     CrossRef
  • HMGB1, a potential regulator of tumor microenvironment in KSHV-infected endothelial cells
    Myung-Ju Lee, Joohee Park, Seokjoo Choi, Seung-Min Yoo, Changhoon Park, Hong Seok Kim, Myung-Shin Lee
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Alpha-2-macroglobulin as a novel diagnostic biomarker for human bladder cancer in urinary extracellular vesicles
    Jisu Lee, Hyun Sik Park, Seung Ro Han, Yun Hee Kang, Ji Young Mun, Dong Wook Shin, Hyun-Woo Oh, Yoon-Kyoung Cho, Myung-Shin Lee, Jinsung Park
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Long non-coding RNAs in Sus scrofa ileum under starvation stress
    Shu Wang, Yi Jia Ma, Yong Shi Li, Xu Sheng Ge, Chang Lu, Chun Bo Cai, Yang Yang, Yan Zhao, Guo Ming Liang, Xiao Hong Guo, Guo Qing Cao, Bu Gao Li, Peng Fei Gao
    Animal Bioscience.2022; 35(7): 975.     CrossRef
Review
Minor and major circRNAs in virus and host genomes
Zhihao Lou , Rui Zhou , Yinghua Su , Chun Liu , Wenting Ruan , Che Ok Jeon , Xiao Han , Chun Lin , Baolei Jia
J. Microbiol. 2021;59(3):324-331.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-1021-z
  • 49 View
  • 0 Download
  • 6 Web of Science
  • 5 Crossref
AbstractAbstract
As a special type of noncoding RNA, circular RNAs (circRNAs) are prevalent in many organisms. They can serve as sponges for microRNAs and protein scaffolds, or templates for protein translation, making them linked to cellular homeostasis and disease progression. In recent years, circRNAs have been found to be abnormally expressed during the processes of viral infection and pathogenesis, and can help a virus escape the immune response of a host. Thus, they are now considered to play important functions in the invasion and development of viruses. Moreover, the potential application of circRNAs as biomarkers of viral infection or candidates for therapeutic targeting deserves consideration. This review summarizes circRNAs in the transcriptome, including their classification, production, functions, and value as biomarkers. This review paper also describes research progress on circRNAs in viral infection (mainly hepatitis B virus, HIV, and some human herpes viruses) and aims to provide new ideas for antiviral therapies targeting circRNAs.

Citations

Citations to this article as recorded by  
  • Host combats porcine reproductive and respiratory syndrome virus infection at non-coding RNAs level
    Zhi Qin, Weiye Liu, Zhihua Qin, Hongliang Zhang, Xuewei Huang
    Virulence.2024;[Epub]     CrossRef
  • miRNA, lncRNA and circRNA: targeted molecules with therapeutic promises in Mycoplasma pneumoniae infection
    Tian Gan, Jianwei Yu, Jun He
    Archives of Microbiology.2023;[Epub]     CrossRef
  • Circ_0138959/miR-495-3p/TRAF6 axis regulates proliferation, wound healing and osteoblastic differentiation of periodontal ligament cells in periodontitis
    Wenjuan Deng, Xiaoliang Wang, Jin Zhang, Sainan Zhao
    Journal of Dental Sciences.2022; 17(3): 1125.     CrossRef
  • Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials
    Yuncong Shi, Huanji Zhang, Suli Huang, Li Yin, Feng Wang, Pei Luo, Hui Huang
    Signal Transduction and Targeted Therapy.2022;[Epub]     CrossRef
  • Omics-based microbiome analysis in microbial ecology: from sequences to information
    Jang-Cheon Cho
    Journal of Microbiology.2021; 59(3): 229.     CrossRef
Journal Article
[PROTOCOL]A Signature-Tagged Mutagenesis (STM)-based murine-infectivity assay for Cryptococcus neoformans
Kwang-Woo Jung , Kyung-Tae Lee , Yong-Sun Bahn
J. Microbiol. 2020;58(10):823-831.   Published online September 29, 2020
DOI: https://doi.org/10.1007/s12275-020-0341-8
  • 58 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Signature-tagged mutagenesis (STM) is a high-throughput genetic technique that can be used to investigate the function of genes by constructing a large number of mutant strains with unique DNA identification tags, pooling them, and screening them for a particular phenotypic trait. STM was first designed for the identification of genes that contribute to the virulence or infectivity of a pathogen in its host. Recently, this
method
has also been applied for the identification of mutants with specific phenotypes, such as antifungal drug resistance and proliferation. In the present study, we describe an STM
method
for the identification of genes contributing to the infectivity of Cryptococcus neoformans using a mutant library, in which each strain was tagged with a unique DNA sequence.

Citations

Citations to this article as recorded by  
  • Genome-wide phenotypic profiling of transcription factors and identification of novel targets to control the virulence of Vibrio vulnificus
    Dayoung Sung, Garam Choi, Minji Ahn, Hokyung Byun, Tae Young Kim, Hojun Lee, Zee-Won Lee, Ji Yong Park, Young Hyun Jung, Ho Jae Han, Sang Ho Choi
    Nucleic Acids Research.2024;[Epub]     CrossRef
  • Zinc-binding domain mediates pleiotropic functions of Yvh1 in Cryptococcus neoformans
    Jae-Hyung Jin, Myung Kyung Choi, Hyun-Soo Cho, Yong-Sun Bahn
    Journal of Microbiology.2021; 59(7): 658.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP