Journal Articles
- Cytophaga hutchinsonii chu_2177, encoding the O-antigen ligase, is essential for cellulose degradation
-
Yahong Tan , Wenxia Song , Lijuan Gao , Weican Zhang , Xuemei Lu
-
J. Microbiol. 2022;60(4):364-374. Published online January 7, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1531-3
-
-
55
View
-
0
Download
-
1
Web of Science
-
2
Crossref
-
Abstract
-
Cytophaga hutchinsonii can efficiently degrade crystalline
cellulose, in which the cell surface cellulases secreted by the
type IX secretion system (T9SS) play important roles, but
the degradation mechanism remains unclear, and the anchor
mechanism of cellulases on the outer membrane in C.
hutchinsonii has not been studied. Here, chu_2177 was identified
by transposon mutagenesis and was proved to be indispensable
for cellulose utilization in C. hutchinsonii. Disruption
of chu_2177 resulted in O-antigen deficiency and chu_
177 could confer O-antigen ligase activity upon an Escherichia
coli waal mutant, indicating that chu_2177 encoded the Ontigen
ligase. Moreover, deletion of chu_2177 caused defects
in cellulose utilization, cell motility, biofilm formation, and
stress resistance. Further study showed that the endoglucanase
activity was markedly decreased in the outer membrane
but was increased in the culture fluid without chu_2177.
Western blot proved that endoglucanase CHU_1336 was not
located on the outer membrane but was released in the culture
fluid of the Δ2177 mutant. Further proteomics analysis
showed that many cargo proteins of T9SS were missing in
the outer membrane of the Δ2177 mutant. Our study revealed
that the deletion of chu_2177 affected the localization of
many T9SS cargo proteins including cellulases on the outer
membrane of C. hutchinsonii.
-
Citations
Citations to this article as recorded by

- Screening and genome-wide analysis of lignocellulose-degrading bacteria from humic soil
Tianjiao Zhang, Shuli Wei, Yajie Liu, Chao Cheng, Jie Ma, Linfang Yue, Yanrong Gao, Yuchen Cheng, Yongfeng Ren, Shaofeng Su, Xiaoqing Zhao, Zhanyuan Lu
Frontiers in Microbiology.2023;[Epub] CrossRef - The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii
Wenxia Song, Xueke Zhuang, Yahong Tan, Qingsheng Qi, Xuemei Lu
Engineering Microbiology.2022; 2(3): 100038. CrossRef
- The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei
-
Meibin Ren , Yifan Wang , Guoxin Liu , Bin Zuo , Yuancheng Zhang , Yunhe Wang , Weifeng Liu , Xiangmei Liu , Yaohua Zhong
-
J. Microbiol. 2020;58(8):687-695. Published online June 10, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9630-5
-
-
55
View
-
0
Download
-
8
Web of Science
-
8
Crossref
-
Abstract
-
The saprophytic fungus Trichoderma reesei has long been used
as a model to study microbial degradation of lignocellulosic
biomass. The major cellulolytic enzymes of T. reesei are the
cellobiohydrolases CBH1 and CBH2, which constitute more
than 70% of total proteins secreted by the fungus. However,
their physiological functions and effects on enzymatic hydrolysis
of cellulose substrates are not sufficiently elucidated.
Here, the cellobiohydrolase-encoding genes cbh1 and cbh2
were deleted, individually or combinatively, by using an auxotrophic
marker-recycling technique in T. reesei. When cultured
on media with different soluble carbon sources, all three
deletion strains (Δcbh1, Δcbh2, and Δcbh1Δcbh2) exhibited
no dramatic variation in morphological phenotypes, but their
growth rates increased apparently when cultured on soluble
cellulase-inducing carbon sources. In addition, Δcbh1 showed
dramatically reduced growth and Δcbh1Δcbh2 could hardly
grew on microcrystalline cellulose (MCC), whereas all strains
grew equally on sodium carboxymethyl cellulose (CMC-Na),
suggesting that the influence of the CBHs on growth was carbon
source-dependent. Moreover, five representative cellulose
substrates were used to analyse the influence of the absence
of CBHs on saccharification efficiency. CBH1 deficiency
significantly affected the enzymatic hydrolysis rates of various
cellulose substrates, where acid pre-treated corn stover
(PCS) was influenced the least. CBH2 deficiency reduced the
hydrolysis of MCC, PCS, and acid pre-treated and delignified
corncob but improved the hydrolysis ability of filter paper.
These results demonstrate the specific contributions of
CBHs to the hydrolysis of different types of biomass, which
could facilitate the development of tailor-made strains with
highly efficient hydrolysis enzymes for certain biomass types
in the biofuel industry.
-
Citations
Citations to this article as recorded by

- An efficient CRISPR/Cas9 genome editing system based on a multiple sgRNA processing platform in Trichoderma reesei for strain improvement and enzyme production
Jiaxin Zhang, Kehang Li, Yu Sun, Cheng Yao, Weifeng Liu, Hong Liu, Yaohua Zhong
Biotechnology for Biofuels and Bioproducts.2024;[Epub] CrossRef - Transcriptome-wide analysis of a superior xylan degrading isolate Penicillium oxalicum 5–18 revealed active lignocellulosic degrading genes
Shuang Hu, Pei Han, Bao-Teng Wang, Long Jin, Hong-Hua Ruan, Feng-Jie Jin
Archives of Microbiology.2024;[Epub] CrossRef - Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass
Fernanda Lopes de Figueiredo, Fabiano Jares Contesini, César Rafael Fanchini Terrasan, Jaqueline Aline Gerhardt, Ana Beatriz Corrêa, Everton Paschoal Antoniel, Natália Sayuri Wassano, Lucas Levassor, Sarita Cândida Rabelo, Telma Teixeira Franco, Uffe Hasb
Microbial Cell Factories.2024;[Epub] CrossRef - Constitutive overexpression of cellobiohydrolase 2 in Trichoderma reesei reveals its ability to initiate cellulose degradation
Yubo Wang, Meibin Ren, Yifan Wang, Lu Wang, Hong Liu, Mei Shi, Yaohua Zhong
Engineering Microbiology.2023; 3(1): 100059. CrossRef - Inducer-free recombinant protein production in Trichoderma reesei: secretory production of endogenous enzymes and heterologous nanobodies using glucose as the sole carbon source
Toshiharu Arai, Mayumi Wada, Hiroki Nishiguchi, Yasushi Takimura, Jun Ishii
Microbial Cell Factories.2023;[Epub] CrossRef - The Influence of Trctf1 Gene Knockout by CRISPR–Cas9 on Cellulase Synthesis by Trichoderma reesei with Various Soluble Inducers
Yudian Chen, Yushan Gao, Zancheng Wang, Nian Peng, Xiaoqin Ran, Tingting Chen, Lulu Liu, Yonghao Li
Fermentation.2023; 9(8): 746. CrossRef - The effect of cellobiohydrolase 1 gene knockout for composition and hydrolytic activity of the enzyme complex secreted by filamentous fungus Penicillium verruculosum
Valeriy Yu. Kislitsin, Andrey M. Chulkin, Ivan N. Zorov, Yuri А. Denisenko, Arkadiy P. Sinitsyn, Alexandra M. Rozhkova
Bioresource Technology Reports.2022; 18: 101023. CrossRef - Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases
Xing Qin, Jiahuan Zou, Kun Yang, Jinyang Li, Xiaolu Wang, Tao Tu, Yuan Wang, Bin Yao, Huoqing Huang, Huiying Luo
Bioresource Technology.2022; 364: 128027. CrossRef
- Antagonistic effect of peptidoglycan of Streptococcus sanguinis on lipopolysaccharide of major periodontal pathogens
-
Sung-Hoon Lee
-
J. Microbiol. 2015;53(8):553-560. Published online July 31, 2015
-
DOI: https://doi.org/10.1007/s12275-015-5319-6
-
-
50
View
-
0
Download
-
15
Crossref
-
Abstract
-
Streptococcus sanguinis is often found in subgingival biofilm
including periodontopathogens, and is correlated with
a delay in colonization by periodontopathogens. However,
the effect of S. sanguinis on inflammation induced by periodontopathogens
is poorly understood. Thus, this study investigated
the effect of S. sanguinis peptidoglycan (PGN) on
induction of TNF-α, IL-6, and IL-8 expression by lipopolysaccharide
(LPS) of periodontal pathogens. LPS was extracted
from Aggregatibacter actinomycetemcomitans, Porphyromonas
gingivalis, and Tannerella forsythia, and PGN was isolated
from S. sanguinis. THP-1 cells, a monocytic cell-line, were cotreated
with LPS of the periodontal pathogens and S. sanguinis
PGN, and then the expression of inflammatory cytokines
was analyzed by real-time RT-PCR. To analyze the underlying
mechanism, the binding assay of the LPS to CD14
or LPS-binding protein (LBP) was performed in the presence
or absence of the PGN after coating recombinant human
CD14 and LBP on EIA plate. The PGN inhibited the binding
of LPS to CD14 and LBP in a dose-dependent manner.
Also, THP-1 cells were co-treated with the LPS in the presence
of N-acetylmuramic acid and N-acetylglucosamine,
as components of PGN, and the competition binding assay
to CD14 and LBP was performed. N-acetylmuramic acid inhibited
the induction of inflammatory cytokine expression
by LPS and the binding of LPS to CD14 or LBP whereas Nacetylglucosamine
did not show such effect. Collectively, the
results
suggest that S. sanguinis PGN inhibited the cytokine
expression induced by the LPS of periodontopathogens due
to the inhibition of LPS binding to LBP and CD14. N-acetylmuramic
acid of PGN may play a role in inhibition of
the LPS binding of periodontopathogens to CD14 and LBP.
-
Citations
Citations to this article as recorded by

- Inflammasome regulation by the cell surface ecto-5′-nucleotidase of the oral commensal, Streptococcus oralis
Natsuno Nakamura, Hirobumi Morisaki, Momoe Itsumi, Nobuo Okahashi, Haruka Fukamachi, Ayako Sato, Miki Kadena, Mariko Kikuchi, Shohei Matsui, Takahiro Funatsu, Hirotaka Kuwata
Biochemical and Biophysical Research Communications.2025; 744: 151206. CrossRef - New putative periodontopathogens and periodontal health‐associated species: A systematic review and meta‐analysis
Angéline Antezack, Damien Etchecopar‐Etchart, Bernard La Scola, Virginie Monnet‐Corti
Journal of Periodontal Research.2023; 58(5): 893. CrossRef - Correlation and mechanism between cardiac magnetic resonance imaging and oral streptococcus count in patients with primary microvascular angina pectoris
Qi Huang, Shi Sheng Wang, Rong Hua Luo
Medicine.2022; 101(12): e29060. CrossRef - Oral ecological environment modifications by hard-cheese: from pH to microbiome: a prospective cohort study based on 16S rRNA metabarcoding approach
Erna Cecilia Lorenzini, Barbara Lazzari, Gianluca Martino Tartaglia, Giampietro Farronato, Valentina Lanteri, Sara Botti, Filippo Biscarini, Paolo Cozzi, Alessandra Stella
Journal of Translational Medicine.2022;[Epub] CrossRef - Biofilm growth and IL-8 & TNF-α-inducing properties of Candida albicans in the presence of oral gram-positive and gram-negative bacteria
Radhika G. Bhardwaj, Arjuna Ellepolla, Hana Drobiova, Maribasappa Karched
BMC Microbiology.2020;[Epub] CrossRef - Genetics ofsanguinis-Group Streptococci in Health and Disease
Angela Nobbs, Jens Kreth, Vincent A. Fischetti, Richard P. Novick, Joseph J. Ferretti, Daniel A. Portnoy, Miriam Braunstein, Julian I. Rood
Microbiology Spectrum.2019;[Epub] CrossRef - Influence of a light‐activated glaze on the adhesion of Streptococcus sanguinis to the surface of polymers used in fabrication of interim prostheses
Daniela Micheline dos Santos, Betina Chiarelo Commar, Emily Vivianne Freitas da Silva, Valentim Adelino Ricardo Barão, Adaias Oliveira Matos, Marcelo Coelho Goiato
Journal of Investigative and Clinical Dentistry.2019;[Epub] CrossRef - Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium
Manlin Qi, Xue Li, Xiaolin Sun, Chunyan Li, Franklin R. Tay, Michael D. Weir, Biao Dong, Yanmin Zhou, Lin Wang, Hockin H.K. Xu
Dental Materials.2019; 35(11): 1665. CrossRef - A wear-resistant TiO2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues
Hao Wu, Li Xie, Min He, Ruitao Zhang, Yuan Tian, Suru Liu, Tao Gong, Fangjun Huo, Ting Yang, Qingyuan Zhang, Shujuan Guo, Weidong Tian
Acta Biomaterialia.2019; 97: 597. CrossRef - Activity of the Chimeric Lysin ClyR against Common Gram-Positive Oral Microbes and Its Anticaries Efficacy in Rat Models
Jingjing Xu, Hang Yang, Yongli Bi, Wuyou Li, Hongping Wei, Yuhong Li
Viruses.2018; 10(7): 380. CrossRef - Bacterial Adhesion on Lithium Disilicate Ceramic Surface Exposed to Different Hydrofluoric Solutions
Daniela Micheline dos Santos, Emily Vivianne Freitas da Silva, Adaias Oliveira Matos, Beatriz Cristiane Zuin Monteiro, Rodrigo Antonio de Medeiros, Sandro Basso Bitencourt, Valentim Adelino Ricardo Barão, Elidiane Cipriano Rangel, Marcelo Coelho Goiato
Ceramics.2018; 1(1): 145. CrossRef - Inhibitory effect of Lactococcus lactis on the bioactivity of periodontopathogens
Hyun-Seung Shin, Dong-Heon Baek, Sung-Hoon Lee
The Journal of General and Applied Microbiology.2018; 64(2): 55. CrossRef - The road less traveled – defining molecular commensalism with Streptococcus sanguinis
J. Kreth, R.A. Giacaman, R. Raghavan, J. Merritt
Molecular Oral Microbiology.2017; 32(3): 181. CrossRef - Buckyballs conjugated with nucleic acid sequences identifies microorganisms in live cell assays
Qingsu Cheng, Bahram Parvin
Journal of Nanobiotechnology.2017;[Epub] CrossRef - Antimicrobial activity and regulation of CXCL9 and CXCL10 in oral keratinocytes
Alison Marshall, Antonio Celentano, Nicola Cirillo, Michele D. Mignogna, Michael McCullough, Stephen Porter
European Journal of Oral Sciences.2016; 124(5): 433. CrossRef
Research Support, Non-U.S. Gov't
- Acinetobacter baumannii Outer Membrane Protein A Modulates the Biogenesis of Outer Membrane Vesicles
-
Dong Chan Moon , Chul Hee Choi , Jung Hwa Lee , Chi-Won Choi , Hye-Yeon Kim , Jeong Soon Park , Seung Il Kim , Je Chul Lee
-
J. Microbiol. 2012;50(1):155-160. Published online February 27, 2012
-
DOI: https://doi.org/10.1007/s12275-012-1589-4
-
-
31
View
-
0
Download
-
102
Scopus
-
Abstract
-
Acinetobacter baumannii secretes outer membrane vesicles
(OMVs) during both in vitro and in vivo growth, but the
biogenesis mechanism by which A. baumannii produces
OMVs remains undefined. Outer membrane protein A of
A. baumannii (AbOmpA) is a major protein in the outer
membrane and the C-terminus of AbOmpA interacts with
diaminopimelate of peptidoglycan. This study investigated
the role of AbOmpA in the biogenesis of A. baumannii
OMVs. Quantitative and qualitative approaches were used
to analyze OMV biogenesis in A. baumannii ATCC 19606T
and an isogenic ΔAbOmpA mutant. OMV production was
significantly increased in the ΔAbOmpA mutant compared
to wild-type bacteria as demonstrated by quantitation of
proteins and lipopolysaccharides (LPS) packaged in OMVs.
LPS profiles prepared from OMVs from wild-type bacteria
and the ΔAbOmpA mutant had identical patterns, but
proteomic analysis showed different protein constituents in
OMVs from wild-type bacteria compared to the ΔAbOmpA
mutant. In conclusion, AbOmpA influences OMV biogenesis
by controlling OMV production and protein composition.
- Staphylococcal methicillin resistance expression under various growth conditions
-
Lee, Yoo Nik , Poo Ha Ryoung , Lee, Young Ik
-
J. Microbiol. 1997;35(2):103-108.
-
-
-
Abstract
-
To improve the detection of methicillin resistant staphylococci, lowered incubation temperature (30℃) and inclusion of sodium chloride in media have been empirically recommended. However, in this study, we found that sodium chloride in Peptone-Yeast Extract-K₂HPO₄(PYK) medium decreased methicillin minimum inhibitory concentrations. Divalent cations were shown to restore the expression of staphylococcal methicillin resistance. However, when it was determined by efficiency of plating, sodium chloride increased methicillin resistance expression on agar medium in which higher divalent cations were contained in the agar medium. The decrease of minimum inhibitory concentrations at 30℃ by sodium chloride occurred in Brain Heart Infusion but did not occur in other media investigated. Interestingly, both PYK and Brain Heart Infusion media had peptone, which contain cholic acids having detergent activities. Inclusion of sodium chloride in PYK caused a higher rate of autolysis. Penicillin binding protein 2a that has a low affinity to beta-lactam antibiotics, was highly inducible in methicillin resistant Staphylococcus epidermidis strains. In this study, we found that autolysins that are activated by the sodium chloride decreased the minimum inhibitory concentration at 30℃, and peptidoglycan is weakened due to the presence of methicillin. Peptone in the media may aggravate the fragile cells. However, stabilization due to the presence of divalent cations and production of penicilin binding protein 2a increase the survival of staphylococci.