Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
9 "Phosphorylation"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Biosynthesis of Chryseno[2,1,c]oxepin‑12‑Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05‑2, and Analysis of Its Anti‑inflammatory Activity
Liangliang Chen , Lin Zhao , Ju Han , Ping Xiao , Mingzhe Zhao , Sen Zhang , Jinao Duan
J. Microbiol. 2024;62(2):113-124.   Published online February 27, 2024
DOI: https://doi.org/10.1007/s12275-024-00105-4
  • 69 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1β (IL-1β; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.

Citations

Citations to this article as recorded by  
  • Effect of different crosslinking agents on carboxymethyl chitosan-glycyrrhizic acid hydrogel: Characterization and biological activities comparison
    Yinbing Wu, Zimin Gu, Tingting Chen, Duntao Zu, Yuhui Gan, Honglin Chen, Jianni Yang, Xin Yu, Huaihong Cai, Pinghua Sun, Jianying Ning, Haibo Zhou, Junxia Zheng
    International Journal of Biological Macromolecules.2025; 298: 139977.     CrossRef
  • New oxepin and dihydrobenzofuran derivatives from Bauhinia saccocalyx roots and their anti-inflammatory, cytotoxic, and antioxidant activities
    Lueacha Tabtimmai, Thanyathon Phonchan, Natrinee Thongprik, Sutin Kaennakam, Nuttapon Yodsin, Kiattawee Choowongkomon, Chanikan Sonklin, Supachai Jadsadajerm, Awat Wisetsai
    Journal of Natural Medicines.2025;[Epub]     CrossRef
  • Efficient directional biosynthesis of isoquercitrin from quercetin by Bacillus subtilis CD-2 and its anti-inflammatory activity
    Ju Han, Jingru Ma, Ruiqi He, Fan Yang, Jingyi Meng, Jiaqi Liu, Fanxing Shi, Jinao Duan, Liangliang Chen, Sen Zhang
    Natural Product Research.2024; : 1.     CrossRef
Potential Use of Mycobacterium paragordonae for Antimycobacterial Drug Screening Systems
Ga-Yeong Cha , Hyejun Seo , Jaehun Oh , Byoung-Jun Kim , Bum-Joon Kim
J. Microbiol. 2023;61(1):121-129.   Published online January 31, 2023
DOI: https://doi.org/10.1007/s12275-022-00009-1
  • 63 View
  • 0 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract
Our recent genome-based study indicated that Mycobacterium paragordonae (Mpg) has evolved to become more adapted to an intracellular lifestyle within free-living environmental amoeba and its enhanced intracellular survival within Acanthamoeba castellanii was also proved. Here, we sought to investigate potential use of Mpg for antimycobacterial drug screening systems. Our data showed that Mpg is more susceptible to various antibiotics compared to the close species M. marinum (Mmar) and M. gordonae, further supporting its intracellular lifestyle in environments, which would explain its protection from environmental insults. In addition, we developed two bacterial whole-cell-based drug screening systems using a recombinant Mpg stain harboring a luciferase reporter vector (rMpg-LuxG13): one for direct application to rMpg-LuxG13 and the other for drug screening via the interaction of rMpg-LuxG13 with A. castellanii. Direct application to rMpg-LuxG13 showed lower inhibitory concentration 50 ( IC50) values of rifampin, isoniazid, clarithromycin, and ciprofloxacin against Mpg compared to Mmar. Application of drug screening system via the interaction of rMpg-LuxG13 with A. castellanii also exhibited lower IC50 values for rifampin against Mpg compared to Mmar. In conclusion, our data indicate that Mpg is more susceptible to various antibiotics than other strains. In addition, our data also demonstrate the feasibility of two whole cellbased drug screening systems using rMpg-LuxG13 strain for the discovery of novel anti-mycobacterial drugs.

Citations

Citations to this article as recorded by  
  • Mycobacterium paragordonae: Insights into its Research Progress and Potential Applications
    Hyejun Seo, Ju-Young Lee, Bum-Joon Kim
    Journal of Bacteriology and Virology.2024; 54(4): 273.     CrossRef
  • Protection against tuberculosis achieved by dissolving microneedle patches loaded with live Mycobacterium paragordonae in a BCG prime-boost strategy
    Mi-Hyun Lee, Hyejun Seo, Moon-Su Lee, Byoung Jun Kim, Hye Lin Kim, Du Hyung Lee, Jaehun Oh, Ju Yeop Shin, Ju Young Jin, Do Hyeon Jeong, Bum-Joon Kim
    Frontiers in Immunology.2023;[Epub]     CrossRef
[PROTOCOL] Determination of protein phosphorylation by polyacrylamide gel electrophoresis
Chang-Ro Lee , Young-Ha Park , Huitae Min , Yeon-Ran Kim , Yeong-Jae Seok
J. Microbiol. 2019;57(2):93-100.   Published online January 31, 2019
DOI: https://doi.org/10.1007/s12275-019-9021-y
  • 42 View
  • 0 Download
  • 37 Web of Science
  • 37 Crossref
AbstractAbstract
Phosphorylation is the most important modification for protein regulation; it controls many signal transduction pathways in all organisms. While several tools to detect phosphorylated proteins have been developed to study a variety of basic cellular processes involving protein phosphorylation, these methods have several limitations. Many proteins exhibit a phosphorylation-dependent electrophoretic mobility shift (PDEMS) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the molecular mechanism responsible for this phenomenon has been elucidated recently. The method for detecting phosphorylated proteins can be simplified by the application of the PDEMS. Herein, we present a novel simple method to detect protein phosphorylation, which is based on the construction of a variant protein displaying a PDEMS. The PDEMS of proteins is caused by the distribution of negatively charged amino acids around the phosphorylation site, i.e. an electrophoretic mobility shift (EMS)-related motif (ΘX1-3ΘX1-3Θ, where Θ corresponds to an acidic or phosphorylated amino acid and X represents any amino acid). The EMS-related motif can be constructed by the introduction of a negative charge by phosphorylation; it results in the decreased binding of SDS to the proteins, consequently inducing the retardation of the mobility of the protein during SDS-PAGE. Based on these molecular analyses of the PDEMS, a protein with the EMSrelated motif is designed and used to determine the in vivo phosphorylation state of the protein. This method may be used as a general strategy to easily measure the ratio of protein phosphorylation in cells.

Citations

Citations to this article as recorded by  
  • Isoforms of the Cytoskeletal LIM-Domain Protein Zyxin in the Early Embryogenesis of Xenopus laevis
    E. D. Ivanova, E. A. Parshina, A. G. Zaraisky, N. Y. Martynova
    Russian Journal of Bioorganic Chemistry.2024; 50(3): 723.     CrossRef
  • Differential phosphorylation of two serine clusters in mouse HORMAD1 during meiotic prophase I progression
    Hiroshi Kogo, Yuka Kikuchi-Kokubo, Yukiko Tajika, Akiko Iizuka-Kogo, Hanako Yamamoto, Maiko Ikezawa, Hiroki Kurahashi, Toshiyuki Matsuzaki
    Experimental Cell Research.2024; 440(1): 114133.     CrossRef
  • Methods optimization for the expression and purification of human calcium calmodulin-dependent protein kinase II alpha
    Scott C. Bolton, David H. Thompson, Tamara L. Kinzer-Ursem, Jian Xu
    PLOS ONE.2024; 19(1): e0285651.     CrossRef
  • The effect of swelling/deswelling cycles on the mechanical behaviors of the polyacrylamide hydrogels
    Rong Huang, Zishun Liu
    Polymer.2024; 312: 127634.     CrossRef
  • Isoforms of the cytoskeletal lim-domain protein zyxin in the early embryogenesis of Xenopus laevis
    E. D. Ivanova, E. A. Parshina, A. G. Zaraisky, N. Y. Martynova
    Биоорганическая химия.2024; 50(3): 287.     CrossRef
  • Reduced liver damage and fibrosis with combined SCD Probiotics and intermittent fasting in aged rat
    Hikmet Taner Teker, Taha Ceylani, Seda Keskin, Gizem Samgane, Burcu Baba, Eda Acıkgoz, Rafig Gurbanov
    Journal of Cellular and Molecular Medicine.2024;[Epub]     CrossRef
  • Promoting longevity in aged liver through NLRP3 inflammasome inhibition using tauroursodeoxycholic acid (TUDCA) and SCD probiotics
    Burcu Baba, Taha Ceylani, Rafig Gurbanov, Eda Acikgoz, Seda Keskin, Hüseyin Allahverdi, Gizem Samgane, Huseyin Tombuloglu, Hikmet Taner Teker
    Archives of Gerontology and Geriatrics.2024; 125: 105517.     CrossRef
  • Engineering a conserved immune coreceptor into a primed state enhances fungal resistance in crops without growth penalty
    Chong Li, Ben-Qiang Gong, Shuyi Luo, Tong Wang, Ruhui Long, Xianya Jiang, Yi Zhen Deng, Jian-Feng Li
    Plant Physiology.2024; 196(4): 2956.     CrossRef
  • ER-PM Junctions on GABAergic Interneurons Are Organized by Neuregulin 2/VAP Interactions and Regulated by NMDA Receptors
    Detlef Vullhorst, Mara S. Bloom, Neha Akella, Andres Buonanno
    International Journal of Molecular Sciences.2023; 24(3): 2908.     CrossRef
  • Aortic Regeneration is Promoted by Intermittent Fasting in Aged Rats
    Hikmet Taner TEKER, Taha CEYLANİ
    Sakarya University Journal of Science.2023; 27(3): 504.     CrossRef
  • Structural analysis and functional evaluation of the disordered ß–hexosyltransferase region from Hamamotoa (Sporobolomyces) singularis
    Suzanne F. Dagher, Asmita Vaishnav, Christopher B. Stanley, Flora Meilleur, Brian F. P. Edwards, José M. Bruno-Bárcena
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef
  • Phosphorylation of axin within biomolecular condensates counteracts its tankyrase-mediated degradation
    Katharina Klement, Martina Brückner, Dominic B. Bernkopf
    Journal of Cell Science.2023;[Epub]     CrossRef
  • SCD Probiotics mitigate cafeteria diet‐induced liver damage in Wistar rats during development
    Taha Ceylani, Harun Önlü, Seda Keskin, Hüseyin Allahverdi, Hikmet Taner Teker
    Journal of Gastroenterology and Hepatology.2023; 38(12): 2142.     CrossRef
  • The rejuvenating influence of young plasma on aged intestine
    Taha Ceylani, Hikmet Taner Teker, Seda Keskin, Gizem Samgane, Eda Acikgoz, Rafig Gurbanov
    Journal of Cellular and Molecular Medicine.2023; 27(18): 2804.     CrossRef
  • Highly sensitive photoelectrochemical and electrochemical dual-mode biosensing of polynucleotide kinase based on multifunctional BiOBr0.8I0.2 /CuSCN composite and biocatalytic precipitation
    Tingting Wang, Lei Shi, Yifei He, Yanqing Ran, Baizhao Zeng, Faqiong Zhao
    Sensors and Actuators B: Chemical.2023; 388: 133818.     CrossRef
  • Phosphorylation of Schizosaccharomyces pombe Dss1 mediates direct binding to the ubiquitin‐ligase Dma1 in vitro
    Nina L. Jacobsen, Magnus Bloch, Peter S. Millard, Sarah F. Ruidiaz, Jonas D. Elsborg, Wouter Boomsma, Ruth Hendus‐Altenburger, Rasmus Hartmann‐Petersen, Birthe B. Kragelund
    Protein Science.2023;[Epub]     CrossRef
  • Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators
    Tan Tan, Chuanfen Wu, Boye Liu, Bih-Fang Pan, David H. Hawke, Zehao Su, Shuaishuai Liu, Wei Zhang, Ruoning Wang, Sue-Hwa Lin, Jian Kuang, Claire Walczak
    Molecular Biology of the Cell.2022;[Epub]     CrossRef
  • Estandarización de un extracto metanólico de cebolla roja para la detección de proteínas fosforiladas en sds-page
    Erika Rodríguez-Cavallo, Karen Arrieta Vergel, Isis Gaviria Figueroa, Albeiro Marrugo-Padilla , Darío Méndez-Cuadro
    Revista Productos Naturales.2022; 5(2): 154.     CrossRef
  • Small Molecule Arranged Thermal Proximity Coaggregation (smarTPCA)—A Novel Approach to Characterize Protein–Protein Interactions in Living Cells by Similar Isothermal Dose–Responses
    Thomas Lenz, Kai Stühler
    International Journal of Molecular Sciences.2022; 23(10): 5605.     CrossRef
  • Phosphoproteome Analysis Using Two-Dimensional Electrophoresis Coupled with Chemical Dephosphorylation
    Raquel Rodríguez-Vázquez, Daniel Mouzo, Carlos Zapata
    Foods.2022; 11(19): 3119.     CrossRef
  • Iodine excess induces hepatic, renal and pancreatic injury in female mice as determined by attenuated total reflection Fourier‐transform infrared spectrometry
    Yang Guo, Chunhui Hu, Bintong Xia, Xianwen Zhou, Sihan Luo, Ruijia Gan, Peng Duan, Yan Tan
    Journal of Applied Toxicology.2022; 42(4): 600.     CrossRef
  • Level of constitutively expressed BMAL1 affects the robustness of circadian oscillations
    Apirada Padlom, Daisuke Ono, Rio Hamashima, Yuko Furukawa, Takashi Yoshimura, Taeko Nishiwaki-Ohkawa
    Scientific Reports.2022;[Epub]     CrossRef
  • Long-term mitochondrial stress induces early steps of Tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis
    Lukasz Samluk, Piotr Ostapczuk, Magdalena Dziembowska, Martin Ott
    Molecular Biology of the Cell.2022;[Epub]     CrossRef
  • Evidence for reciprocal evolution of the global repressor Mlc and its cognate phosphotransferase system sugar transporter
    Ji‐Hee Yoon, Min‐Seung Jeon, Seong‐il Eyun, Yeong‐Jae Seok
    Environmental Microbiology.2022; 24(1): 122.     CrossRef
  • Cloning, expression, solubilization, and purification of a functionally active recombinant cAMP-dependent protein kinase catalytic subunit-like protein PKAC1 from Trypanosoma equiperdum
    Alberto Guevara, Cristina Lugo, Alejandro J. Montilla, Maritza Calabokis, Joilyneth Ferreira, Juan Carlos Martínez, José Bubis
    Protein Expression and Purification.2022; 192: 106041.     CrossRef
  • Phosphotransferase system sugars immediately induce mutations of Cra in an Escherichia coli ptsH mutant
    Huitae Min, Yeong‐Jae Seok
    Environmental Microbiology.2022; 24(11): 5425.     CrossRef
  • Purification and Characterization of Mannanase from Aspergillus awamori for Fruit Juice Clarification
    Ikram ul Haq, Sheeba Shakoor, Ali Nawaz, Yesra Arshad , Hamid Mukhtar
    Protein & Peptide Letters.2021; 28(4): 459.     CrossRef
  • Preparation of luminescent silica nanoparticles with immobilized metal ion affinity for labeling phosphorylated proteins in Western Blot
    Yuxiao MAO, Mengmeng ZHENG, Guizhen LIU, Baoli AN, Jingwu KANG
    Chinese Journal of Chromatography.2021; 39(4): 384.     CrossRef
  • Loss of the transcriptional repressor Rev-erbα upregulates metabolism and proliferation in cultured mouse embryonic fibroblasts
    Sean P. Gillis, Hongwei Yao, Salu Rizal, Hajime Maeda, Julia Chang, Phyllis A. Dennery
    Scientific Reports.2021;[Epub]     CrossRef
  • Functional dissection of the phosphotransferase system provides insight into the prevalence of Faecalibacterium prausnitzii in the host intestinal environment
    Deborah Kang, Hyeong‐In Ham, Seung‐Hwan Lee, Yong‐Joon Cho, Yeon‐Ran Kim, Chang‐Kyu Yoon, Yeong‐Jae Seok
    Environmental Microbiology.2021; 23(8): 4726.     CrossRef
  • Arsenic disrupts neuronal insulin signaling through increasing free PI3K-p85 and decreasing PI3K activity
    Churaibhon Wisessaowapak, Piyajit Watcharasit, Jutamaad Satayavivad
    Toxicology Letters.2021; 349: 40.     CrossRef
  • The inner membrane protein LapB is required for adaptation to cold stress in an LpxC-independent manner
    Han Byeol Lee, Si Hyoung Park, Chang-Ro Lee
    Journal of Microbiology.2021; 59(7): 666.     CrossRef
  • Subsynaptic Distribution, Lipid Raft Targeting and G Protein-Dependent Signalling of the Type 1 Cannabinoid Receptor in Synaptosomes from the Mouse Hippocampus and Frontal Cortex
    Miquel Saumell-Esnaola, Sergio Barrondo, Gontzal García del Caño, María Aranzazu Goicolea, Joan Sallés, Beat Lutz, Krisztina Monory
    Molecules.2021; 26(22): 6897.     CrossRef
  • The DNA deaminase APOBEC3B interacts with the cell-cycle protein CDK4 and disrupts CDK4-mediated nuclear import of Cyclin D1
    Jennifer L. McCann, Madeline M. Klein, Evelyn M. Leland, Emily K. Law, William L. Brown, Daniel J. Salamango, Reuben S. Harris
    Journal of Biological Chemistry.2019; 294(32): 12099.     CrossRef
  • Sugar-mediated regulation of a c-di-GMP phosphodiesterase in Vibrio cholerae
    Kyoo Heo, Young-Ha Park, Kyung-Ah Lee, Joonwon Kim, Hyeong-In Ham, Byung-Gee Kim, Won-Jae Lee, Yeong-Jae Seok
    Nature Communications.2019;[Epub]     CrossRef
  • Structural insight into glucose repression of the mannitol operon
    Mangyu Choe, Huitae Min, Young-Ha Park, Yeon-Ran Kim, Jae-Sung Woo, Yeong-Jae Seok
    Scientific Reports.2019;[Epub]     CrossRef
  • Polar landmark protein HubP recruits flagella assembly protein FapA under glucose limitation in Vibrio vulnificus
    Soyoung Park, Jihee Yoon, Chang‐Ro Lee, Ju Yeon Lee, Yeon‐Ran Kim, Kyoung‐Soon Jang, Kyu‐Ho Lee, Yeong‐Jae Seok
    Molecular Microbiology.2019; 112(1): 266.     CrossRef
Review
REVIEW] Hgc1-Cdc28–how much does a single protein kinase do in the regulation of hyphal development in Candida albicans?
Yue Wang
J. Microbiol. 2016;54(3):170-177.   Published online February 27, 2016
DOI: https://doi.org/10.1007/s12275-016-5550-9
  • 50 View
  • 0 Download
  • 18 Crossref
AbstractAbstract
The fungal human pathogen Candida albicans can cause invasive infection with high mortality rates. A key virulence factor is its ability to switch between three morphologies: yeast, pseudohyphae and hyphae. In contrast to the ovalshaped unicellular yeast cells, hyphae are highly elongated, tube-like, and multicellular. A long-standing question is what coordinates all the cellular machines to construct cells with distinct shapes. Hyphal-specific genes (HSGs) are thought to hold the answer. Among the numerous HSGs found, only UME6 and HGC1 are required for hyphal development. UME6 encodes a transcription factor that regulates many HSGs including HGC1. HGC1 encodes a G1 cyclin which partners with the Cdc28 cyclin-dependent kinase. Hgc1- Cdc28 simultaneously phosphorylates and regulates multiple substrates, thus controlling multiple cellular apparatuses for morphogenesis. This review is focused on major progresses made in the past decade on Hgc1’s roles and regulation in C. albicans hyphal development and other traits important for infection.

Citations

Citations to this article as recorded by  
  • Systematic analysis of the Candida albicans kinome reveals environmentally contingent protein kinase-mediated regulation of filamentation and biofilm formation in vitro and in vivo
    Juraj Kramara, Min-Ju Kim, Tomye L. Ollinger, Laura C. Ristow, Rohan S. Wakade, Robert Zarnowski, Melanie Wellington, David R. Andes, Aaron G. Mitchell, Damian J. Krysan, Judith Berman
    mBio.2024;[Epub]     CrossRef
  • Hgc1 Independence of Biofilm Hyphae in Candida albicans
    Anupam Sharma, Norma V. Solis, Manning Y. Huang, Frederick Lanni, Scott G. Filler, Aaron P. Mitchell, Yong-Sun Bahn
    mBio.2023;[Epub]     CrossRef
  • Strain variation in gene expression impact of hyphal cyclin Hgc1 in Candida albicans
    Anupam Sharma, Aaron P Mitchell, J Berman
    G3: Genes, Genomes, Genetics.2023;[Epub]     CrossRef
  • Use of the Iron-Responsive RBT5 Promoter for Regulated Expression in Candida albicans
    Yinhe Mao, Norma V. Solis, Anupam Sharma, Max V. Cravener, Scott G. Filler, Aaron P. Mitchell, Michael Lorenz
    mSphere.2022;[Epub]     CrossRef
  • Systematic Metabolic Profiling Identifies De Novo Sphingolipid Synthesis as Hypha Associated and Essential for Candida albicans Filamentation
    Enrico Garbe, Franziska Gerwien, Dominik Driesch, Tina Müller, Bettina Böttcher, Markus Gräler, Slavena Vylkova, Manuel Liebeke
    mSystems.2022;[Epub]     CrossRef
  • The Antimicrobial Peptide AMP-17 Derived from Musca domestica Inhibits Biofilm Formation and Eradicates Mature Biofilm in Candida albicans
    Chaoqin Sun, Xinyu Zhao, Zhenglong Jiao, Jian Peng, Luoxiong Zhou, Longbing Yang, Mingjiao Huang, Chunren Tian, Guo Guo
    Antibiotics.2022; 11(11): 1474.     CrossRef
  • Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans
    Kyunghun Min, Thomas F. Jannace, Haoyu Si, Krishna R. Veeramah, John D. Haley, James B. Konopka, Joachim Morschhäuser
    PLOS Pathogens.2021; 17(8): e1009861.     CrossRef
  • The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans
    Rohan S. Wakade, Laura C. Ristow, Mark A. Stamnes, Anuj Kumar, Damian J. Krysan, James W. Kronstad
    mBio.2020;[Epub]     CrossRef
  • The regulation of hyphae growth in Candida albicans
    Hui Chen, Xuedong Zhou, Biao Ren, Lei Cheng
    Virulence.2020; 11(1): 337.     CrossRef
  • Phosphatidate phosphatase Pah1 has a role in the hyphal growth and virulence of Candida albicans
    Chunhua Mu, Chaoying Pan, Qi Han, Qizheng Liu, Yue Wang, Jianli Sang
    Fungal Genetics and Biology.2019; 124: 47.     CrossRef
  • Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound
    Fatmah M. Alqahtani, Brock A. Arivett, Zachary E. Taylor, Scott T. Handy, Anthony L. Farone, Mary B. Farone, Shankar Thangamani
    PLOS ONE.2019; 14(12): e0226068.     CrossRef
  • N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi
    Kyunghun Min, Shamoon Naseem, James B. Konopka
    Journal of Fungi.2019; 6(1): 8.     CrossRef
  • Fungal microsclerotia development: essential prerequisites, influencing factors, and molecular mechanism
    Zhangyong Song
    Applied Microbiology and Biotechnology.2018; 102(23): 9873.     CrossRef
  • A comprehensive analysis of Candida albicans phosphoproteome reveals dynamic changes in phosphoprotein abundance during hyphal morphogenesis
    Priyanka Ghorai, Mohammad Irfan, Alka Narula, Asis Datta
    Applied Microbiology and Biotechnology.2018; 102(22): 9731.     CrossRef
  • A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion
    Carlos Garcia, Anaïs Burgain, Julien Chaillot, Émilie Pic, Inès Khemiri, Adnane Sellam
    Scientific Reports.2018;[Epub]     CrossRef
  • Candida albicans morphology: still in focus
    Ilse D. Jacobsen, Bernhard Hube
    Expert Review of Anti-infective Therapy.2017; 15(4): 327.     CrossRef
  • Human fungal pathogens: Why should we learn?
    Jeong-Yoon Kim
    Journal of Microbiology.2016; 54(3): 145.     CrossRef
  • CDK phosphorylates the polarisome scaffold Spa2 to maintain its localization at the site of cell growth
    Haitao Wang, Zhen‐Xing Huang, Jie Ying Au Yong, Hao Zou, Guisheng Zeng, Jiaxin Gao, Yanming Wang, Ada Hang‐Heng Wong, Yue Wang
    Molecular Microbiology.2016; 101(2): 250.     CrossRef
Research Support, Non-U.S. Gov'ts
Phosphorylation of the nucleocapsid protein of Hantaan virus by casein kinase II
Jeong-Joong Yoon , Yun-Tai Lee , Hin Chu , Seung-yeol Son , Manbok Kim
J. Microbiol. 2015;53(5):343-347.   Published online May 3, 2015
DOI: https://doi.org/10.1007/s12275-015-5095-3
  • 45 View
  • 0 Download
  • 2 Crossref
AbstractAbstract
Hantaanvirus (HTNV) is the prototype of the genus Hantavirus, which belongs to the family Bunyaviridae. Hantaviruses are carried and transmitted by rodents and are known to cause two serious disease syndromes in humans i.e., hemorrhagic fever with renal syndrome (HFRS) and the hantavirus pulmonary syndrome (HPS). HTNV is an enveloped virus that contains a tripartite genome consisting of three negative-sense RNA segments (L, M, S), and the S and M segment of HTNV, respectively, encode the viral nucleocapsid protein (NP) and envelope glycoproteins. Possible phosphorylation motifs of casein kinase II (CKII) and protein kinase C (PKC) were identified in HTNV NP through bioinformatics searches. Sucrose gradient SDS-PAGE analysis indicated that dephosphorylated HTNV NP migrated faster than non-dephosphorylated NP, suggesting that HTNV NP is phosphorylated in infected Vero E6 cells. Immunoblot anaylsis of HTNV particles with anti-phosphoserine antibody and anti-phosphothreonine antibody after immunoprecipitation showed that viral particles are readily phosphorylated at threonine residues. In vitro kinase assay further showed that HTNV NP is phosphorylated by CK II, but not by PKC. Full length or truncated HTNV NPs expressed in E. coli were phosphorylated in vitro by CKII suggesting that phosphorylation may occur in vivo at multiple sites. Site specific mutagenesis studies suggest that HTNV NP phosphorylation might occur at unknown sites excluding the site-directly mutagenized locations. Taken together, HTNV NP can be phosphorylated mainly at threonine residues in vivo by CK II treatment.

Citations

Citations to this article as recorded by  
  • Protein kinase CK2: a potential therapeutic target for diverse human diseases
    Christian Borgo, Claudio D’Amore, Stefania Sarno, Mauro Salvi, Maria Ruzzene
    Signal Transduction and Targeted Therapy.2021;[Epub]     CrossRef
  • Unique Interferon Pathway Regulation by the Andes Virus Nucleocapsid Protein Is Conferred by Phosphorylation of Serine 386
    Matthew J. Simons, Elena E. Gorbunova, Erich R. Mackow, Susana López
    Journal of Virology.2019;[Epub]     CrossRef
Phosphorylation Regulates Mycobacterial Proteasome
Tripti Anandan , Jaeil Han , Heather Baun , Seeta Nyayapathy , Jacob T. Brown , Rebekah L. Dial , Juan A. Moltalvo , Min-Seon Kim , Seung Hwan Yang , Donald R. Ronning , Robert N. Husson , Joowon Suh , Choong-Min Kang
J. Microbiol. 2014;52(9):743-754.   Published online September 2, 2014
DOI: https://doi.org/10.1007/s12275-014-4416-2
  • 50 View
  • 0 Download
  • 14 Crossref
AbstractAbstract
Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome- associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.

Citations

Citations to this article as recorded by  
  • Phosphoproteome modulation by nucleoside diphosphate kinase affects photosynthesis & stress tolerance of Nostoc PCC 7120
    Anurag Kirti, Hema Rajaram
    Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics.2025; 1873(1): 141054.     CrossRef
  • Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy
    Yiduo Liu, Han Li, Dejia Dai, Jiakang He, Zhengmin Liang
    Current Issues in Molecular Biology.2024; 46(6): 5825.     CrossRef
  • Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing
    Keith Levendosky, Niklas Janisch, Luis E. N. Quadri, Sabine Ehrt
    mBio.2023;[Epub]     CrossRef
  • Nitrate-nitrite fate and oxygen sensing in dormant Mycobacterium tuberculosis: A bioinorganic approach highlighting the importance of transition metals
    Eduardo H.S. Sousa, Marta S.P. Carepo, José J.G. Moura
    Coordination Chemistry Reviews.2020; 423: 213476.     CrossRef
  • The Mycobacterium tuberculosis Pup-proteasome system regulates nitrate metabolism through an essential protein quality control pathway
    Samuel H. Becker, Jordan B. Jastrab, Avantika Dhabaria, Catherine T. Chaton, Jeffrey S. Rush, Konstantin V. Korotkov, Beatrix Ueberheide, K. Heran Darwin
    Proceedings of the National Academy of Sciences.2019; 116(8): 3202.     CrossRef
  • PknG supports mycobacterial adaptation in acidic environment
    Ruchi Paroha, Rashmi Chourasia, Rajesh Mondal, Shivendra K. Chaurasiya
    Molecular and Cellular Biochemistry.2018; 443(1-2): 69.     CrossRef
  • Bacterial Proteasomes: Mechanistic and Functional Insights
    Samuel H. Becker, K. Heran Darwin
    Microbiology and Molecular Biology Reviews.2017;[Epub]     CrossRef
  • How to control an intracellular proteolytic system: Coordinated regulatory switches in the mycobacterial Pup-proteasome system
    Eyal Gur, Maayan Korman, Nir Hecht, Ofir Regev, Shai Schlussel, Nimrod Silberberg, Yifat Elharar
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research.2017; 1864(12): 2253.     CrossRef
  • Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence
    Melissa Richard-Greenblatt, Yossef Av-Gay, William R. Jacobs Jr., Helen McShane, Valerie Mizrahi, Ian M. Orme
    Microbiology Spectrum.2017;[Epub]     CrossRef
  • Prokaryotic Ubiquitin-Like Protein and Its Ligase/Deligase Enyzmes
    Cyrille L. Delley, Andreas U. Müller, Michal Ziemski, Eilika Weber-Ban
    Journal of Molecular Biology.2017; 429(22): 3486.     CrossRef
  • Phosphorylation Modulates Catalytic Activity of Mycobacterial Sirtuins
    Ghanshyam S. Yadav, Sandeep K. Ravala, Neha Malhotra, Pradip K. Chakraborti
    Frontiers in Microbiology.2016;[Epub]     CrossRef
  • Pupylation-dependent and -independent proteasomal degradation in mycobacteria
    Frank Imkamp, Michal Ziemski, Eilika Weber-Ban
    Biomolecular Concepts.2015; 6(4): 285.     CrossRef
  • Age-related changes in the proteostasis network in the brain of the naked mole-rat: Implications promoting healthy longevity
    Judy C. Triplett, Antonella Tramutola, Aaron Swomley, Jessime Kirk, Kelly Grimes, Kaitilyn Lewis, Miranda Orr, Karl Rodriguez, Jian Cai, Jon B. Klein, Marzia Perluigi, Rochelle Buffenstein, D. Allan Butterfield
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.2015; 1852(10): 2213.     CrossRef
  • Bacterial Proteasome Activator Bpa (Rv3780) Is a Novel Ring-Shaped Interactor of the Mycobacterial Proteasome
    Cyrille L. Delley, Juerg Laederach, Michal Ziemski, Marcel Bolten, Daniel Boehringer, Eilika Weber-Ban, Riccardo Manganelli
    PLoS ONE.2014; 9(12): e114348.     CrossRef
Phosphorylation-Dependent Septin Interaction of Bni5 is Important for Cytokinesis
Sung Chang Nam , Hyeran Sung , Seung Hye Kang , Jin Young Joo , Soo Jae Lee , Yeon Bok Chung , Chong-Kil Lee , Sukgil Song
J. Microbiol. 2007;45(3):227-233.
DOI: https://doi.org/2538 [pii]
  • 35 View
  • 0 Download
AbstractAbstract
In budding yeast, septin plays as a scaffold to recruits protein components and regulates crucial cellular events including bud site selection, bud morphogenesis, Cdc28 activation pathway, and cytokinesis. Phosphorylation of Bni5 isolated as a suppressor for septin defect is essential to Swe1-dependent regulation of bud morphogenesis and mitotic entry. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we provide evidence that Bni5 phosphorylation is important for interaction with septin component Cdc11 and for timely delocalization from septin filament at late mitosis. Phosphorylation-deficient bni5-4A was synthetically lethal with hof1Δ. bni5-4A cells had defective structure of septin ring and connected cell morphology, indicative of defects in cytokinesis. Two-hybrid analysis revealed that bni5-4A has a defect in direct interaction with Cdc11 and Cdc12. GFP-tagged bni5-4A was normally localized at mother-bud neck of budded cells before middle of mitosis. In contrast, at large-budded telophase cells, bni5-4A-GFP was defective in localization and disappeared from the neck approximately 2 min earlier than that of wild type, as evidenced by time-lapse analysis. Therefore, earlier delocalization of bni5-4A from septin filament is consistent with phosphorylation-dependent interaction with the septin component. These results suggest that timely delocalization of Bni5 by phosphorylation is important for septin function and regulation of cytokinesis.
Role of RNA Polymerase II Carboxy Terminal Domain Phosphorylation in DNA Damage Response
Su-Jin Jeong , Hye-Jin Kim , Yong-Jin Yang , Ja-Hwan Seol , Bo-Young Jung , Jeong-Whan Han , Hyang-Woo Lee , Eun-Jung Cho
J. Microbiol. 2005;43(6):516-522.
DOI: https://doi.org/2296 [pii]
  • 40 View
  • 0 Download
AbstractAbstract
The phosphorylation of C-terminal domain (CTD) of Rpb1p, the largest subunit of RNA polymerase II plays an important role in transcription and the coupling of various cellular events to transcription. In this study, its role in DNA damage response is closely examined in Saccharomyces cerevisiae, focusing specifically on several transcription factors that mediate or respond to the phosphorylation of the CTD. CTDK-1, the pol II CTD kinase, FCP1, the CTD phosphatase, ESS1, the CTD phosphorylation dependent cis-trans isomerase, and RSP5, the phosphorylation dependent pol II ubiquitinating enzyme, were chosen for the study. We determined that the CTD phosphorylation of CTD, which occurred predominantly at serine 2 within a heptapeptide repeat, was enhanced in response to a variety of sources of DNA damage. This modification was shown to be mediated by CTDK-1. Although mutations in ESS1 or FCP1 caused cells to become quite sensitive to DNA damage, the characteristic pattern of CTD phosphorylation remained unaltered, thereby implying that ESS1 and FCP1 play roles downstream of CTD phosphorylation in response to DNA damage. Our data suggest that the location or extent of CTD phosphorylation might be altered in response to DNA damage, and that the modified CTD, ESS1, and FCP1 all contribute to cellular survival in such conditions.
Stage-specific change and regulation of endogenous protein phosphorylation in allomyces macrogynus
Park, Young Shik , Oh, Keun Hee , Lee, Soo Woong , Seong, Chang Soo , Park, I Ha , Yim, Jeong Bin
J. Microbiol. 1996;34(4):374-378.
  • 34 View
  • 0 Download
AbstractAbstract
In the aquatic fungus Allomyces macrogynus the effects of Ca^2+ and cAMP on the intracellular signal transduction of zeoospore germination were studied using in vitro protein phosphorylation assay system. An endogenuously phosphorylated protein (p50) having molecular weight of 50 kDa on SDS-PAGE was found in soluble fractions of both zeoospore and mycelium. In zoospore extract, the endogenous phophorylation of p50 was weak without any effectors, but was enhanced by Ca^2+ and even more by cAMP. Phosphorylation of the same protein in mycelial extract was high only in the absence of cAMP. Irrespective of the presence of Ca^2+ and cAMP, its phosphorylation was antagonistically suppressed in assay of combined zoospore and mycelial extracts. These results suggest that p50 is interconvertible in phosphorylation/dephosphorylation as a novel protein involved in germination of A. macrogynus. The antagonistic effect of cAMP to the phosphorylation of p50s from different developmental stages may be important in the regulation of cellular differentiation.

Journal of Microbiology : Journal of Microbiology
TOP