Search
- Page Path
-
HOME
> Search
- Isolation of pseudomonas sp. S-47 and its degradation of 4-chlorobenzoic acid
-
Seo, Dong In , Lim, Jai Yun , Kim, Young Chang , Min, Kyung Hee , Kim, Chi Kyung
-
J. Microbiol. 1997;35(3):188-192.
-
-
-
Abstract
- The strain of S-47 degrading 4-chlorobenzoic acid (4CBA) was isolated from Ulsan chemical industrial complex by enrichment cultivation with 1 mM 4CBA. The strain was Gram-negative rod and grew optimally at 30℃ and pH 7 under aerobic condition, so that the organism was identified as a species of Pseudomonas. Pseudomonas sp. S-47 degraded 4-chlorobenzoic acid to produce a yellow-colored meta-cleavage product, which was confirmed to be 5-chloro-2-hydroxymuconic semialdehyde (5C-2HMS) by UV-visible spectrophotometry. 5C-3HMS was proved trometry. This means that Pseudomonas sp. S-47 degraded 4CBA via 4-chlorocatechol to 5C-2HMS by meta-cleavage reaction and then to 5C-2HMA by 5C-2HMS dehydrogenase.
- Characteristics of Catechol 2,3-dioxygenase Produced by 4-Chlorobenzoate-degrading Pseudomonas sp. S-47
-
Kim, Ki Pil , Seo, Dong In , Min, Kyung Hee , Ka, Jong Ok , Park, Yong Keun , Kim, Chi Kyung
-
J. Microbiol. 1997;35(4):295-299.
-
-
-
Abstract
- Pseudomonas sp. S-47 is capable of transforming 4-chlorobenzoate to 4-chlorocatechol which is subsequently oxidized bty meta-cleavage dioxygenase to prodyce 5-chloro-2-hydroxymuconic semialdehyde. Catechol 2,3-dioxygenase (C23O) produced by Pseudomonas sp. S-47 was purified and characterized in this study. The C23O enzyme was maximally produced in the late logarithmic growth phase, and the temperature and pH for maximunm enzyme activity were 30~35℃ and 7.0, respectively. The enzyme was purified and concentrated 5 fold from the crude cell extracts through Q Sepharose chromatography and Sephadex G-100 gel filtration after acetone precipitation. The enzyme was identified as consisting of 35 kDa subunits when analyzed by SDS-PAGE. The C23O produced by Pseudomonas sp. S-47 was similar to Xy1E of Pseudomonas putida with respect to substrate specificity for several catecholic compounds.
- Cloning and Expression in E. coli of the Genes Responsible for Degradation of 4-Chlorobenzoate and 4-Chlorocatechol drom Pseudomonas sp. Strain S-47
-
Kim, Ki Pil , Seo, Dong In , Lee, Dong Hun , Kim, Young Soo , Kim, Chi Kyung
-
J. Microbiol. 1998;36(2):99-105.
-
-
-
Abstract
- Pseudomonas sp. strain S-47 can grow on 4-chlorobenzoate (4CBA) and transform 4CBA to 4-chlorocatechol (4CC) under aerobic conditions, which is subsequently degraded to produce 2-hydroxypent-2, 4-dienoate (2H-2,4DA). The upper steps for conversion of 4CBA to 4CC are recognized to be conducted by the benzoate-1,2-dioxygenase (B12O) system encoded by benABC and benD. The ensving meta-cleabage reaction of 4CC is catalyzed by catechol 2,3-dioxygenase(C23O) encoded by the xylE gene. The benABCD and the xylE genes were cloned from the chromosome of Pseudomonas sP. S-47 into pCS1(48.7kb), pCS101(24.4kb), pCS201(17.7kb), and pCS202(6.7kb) recombinant plasmids, and were well ecpressed in E. coli XL1-Blue host cells. The PstI-insert (4.0kb) of pC202 was found to contain the benABCD and cylE genes and to have 2 EcoRV, 1 SphI, and 3 SacII restriction sites.
TOP