Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "RISA"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Variation of cassiicolin genes among Chinese isolates of Corynespora cassiicola
Jun Wu , Xuewen Xie , Yanxia Shi , Ali Chai , Qi Wang , Baoju Li
J. Microbiol. 2018;56(9):634-647.   Published online July 27, 2018
DOI: https://doi.org/10.1007/s12275-018-7497-5
  • 44 View
  • 0 Download
  • 11 Crossref
AbstractAbstract
Corynespora cassiicola is a species of fungus that is a plant pathogen of many agricultural crop plants, including severe target spot disease on cucumber. Cassiicolin is an important effector of pathogenicity of this fungus. In this study, we collected 141 Corynespora isolates from eighteen hosts, and the casscolin gene was detected in 82 C. cassiicola strains. The deduced protein sequences revealed that 72 isolates contained the Cas2 gene, two strains from Gynura bicolor harboured the Cas2.2 gene, and 59 isolates without a cassiicolin gene were classified as Cas0. Phylogenetic analyses was performed for the 141 isolates using four loci (ITS, ga4, caa5, and act1) and revealed two genetic clusters. Cluster A is composed of four subclades: subcluster A1 includes all Cas2 isolates plus 18 Cas0 strains, subcluster A2 includes the eight Cas5 isolates and one Cas0 isolate, and subclusters A3 and A4 contain Cas0 strains. Cluster B consists of 21 Cas0 isolates. Twenty-two C. cassiicola strains from different toxin classes showed varying degrees of virulence against cucumber. Cas0 or Cas2 strains induced diverse responses on cucumber, from no symptoms to symptoms of moderate or severe infection, but all Cas5 isolates exhibited avirulence on cucumber.

Citations

Citations to this article as recorded by  
  • Diversity of cassiicolin profiles and culture filtrate toxicity of Corynespora cassiicola isolates from South Indian rubber plantations
    Reshma T R, Shilpa Babu, Vineeth V K, Shaji Philip
    Industrial Crops and Products.2025; 224: 120243.     CrossRef
  • The Diseases and Pests of Rubber Tree and Their Natural Control Potential: A Bibliometric Analysis
    Liqiong Chen, Lidan Xu, Xiaona Li, Yilin Wang, Yun Feng, Guixiu Huang
    Agronomy.2023; 13(8): 1965.     CrossRef
  • Need for disease resistance breeding against Corynespora cassiicola in crops
    Edgar Sierra-Orozco, German Sandoya, Seonghee Lee, Gary Vallad, Samuel Hutton
    Frontiers in Agronomy.2023;[Epub]     CrossRef
  • Comparison and Correlation of Corynespora cassiicola Populations from Kiwifruit and Other Hosts Based on Morphology, Phylogeny, and Pathogenicity
    Jing Xu, Guoshu Gong, Yongliang Cui, Yuhang Zhu, Jun Wang, Kaikai Yao, Wen Chen, Cuiping Wu, Rui Yang, Xiaodan Yang, Pan Li, Henan Zhao, Sen Zhong, Yi Luo, Yue Li, Wenfei Liao
    Plant Disease.2023; 107(7): 1979.     CrossRef
  • Unraveling the Host-Selective Toxic Interaction of Cassiicolin with Lipid Membranes and Its Cytotoxicity
    Kien Xuan Ngo, Phuong Doan N. Nguyen, Hirotoshi Furusho, Makoto Miyata, Tomomi Shimonaka, Nguyen Ngoc Bao Chau, Nguyen Phuong Vinh, Nguyen Anh Nghia, Tareg Omer Mohammed, Takehiko Ichikawa, Noriyuki Kodera, Hiroki Konno, Takeshi Fukuma, Nguyen Bao Quoc
    Phytopathology®.2022; 112(7): 1524.     CrossRef
  • The necrosis- and ethylene-inducing peptide 1-like protein (NLP) gene family of the plant pathogen Corynespora cassiicola
    Thaís Carolina da Silva Dal’Sasso, Vinícius Delgado da Rocha, Hugo Vianna Silva Rody, Maximiller Dal-Bianco Lamas Costa, Luiz Orlando de Oliveira
    Current Genetics.2022; 68(5-6): 645.     CrossRef
  • Identification and virulence evaluation of Corynespora cassiicola cassiicolin-encoding gene isolates from rubber trees in Vietnam
    Nguyen Ngoc Bao Chau, Nguyen Van Minh, Nguyen Mai Nghiep, Nguyen Phuong Vinh, Nguyen Anh Nghia, Nguyen Bao Quoc
    Tropical Plant Pathology.2022; 47(3): 378.     CrossRef
  • The fungal pathogen Corynespora cassiicola: A review and insights for target spot management on cotton and Soya bean
    Marina N. Rondon, Kathy Lawrence
    Journal of Phytopathology.2021; 169(6): 329.     CrossRef
  • Mitogenome-wide comparison and phylogeny reveal group I intron dynamics and intraspecific diversification within the phytopathogen Corynespora cassiicola
    Qingzhou Ma, Haiyan Wu, Yuehua Geng, Qiang Li, Rui Zang, Yashuang Guo, Chao Xu, Meng Zhang
    Computational and Structural Biotechnology Journal.2021; 19: 5987.     CrossRef
  • Genomic Characteristics and Comparative Genomics Analysis of Two Chinese Corynespora cassiicola Strains Causing Corynespora Leaf Fall (CLF) Disease
    Boxun Li, Yang Yang, Jimiao Cai, Xianbao Liu, Tao Shi, Chaoping Li, Yipeng Chen, Pan Xu, Guixiu Huang
    Journal of Fungi.2021; 7(6): 485.     CrossRef
  • Endophytes from Wild Rubber Trees as Antagonists of the Pathogen Corynespora cassiicola
    Valérie Pujade-Renaud, Marine Déon, Romina Gazis, Sébastien Ribeiro, Florence Dessailly, Françoise Granet, Priscila Chaverri
    Phytopathology®.2019; 109(11): 1888.     CrossRef
Biosynthesis of 2-amino-3-hydroxycyclopent-2-enone moiety of bafilomycin in Kitasatospora cheerisanensis KCTC2395
Nguyen Phan Kieu Hanh , Jae Yoon Hwang , Hye Ryeung Oh , Geum Jin Kim , Hyukjae Choi , Doo Hyun Nam
J. Microbiol. 2018;56(8):571-578.   Published online July 25, 2018
DOI: https://doi.org/10.1007/s12275-018-8267-0
  • 52 View
  • 0 Download
  • 4 Crossref
AbstractAbstract
Bafilomycins produced by Kitasatospora cheerisanensis KCTC- 2395 belong to the 16-membered macrolactone family plecomacrolide antibiotics. Bafilomycin B1 contains 2-amino- 3-hydroxycyclopent-2-enone (C5N), a five membered ring, which gets condensed via an amide linkage to bafilomycin polyketide. To study the biosynthetic pathway of C5N during bafilomycin biosynthesis in K. cheerisanensis KCTC2395, we attempted the functional analysis of two putative genes, encoding 5-aminolevulinic acid synthase (ALAS) and acyl- CoA ligase (ACL). The amplified putative genes for ALAS and ACL were cloned into the E. coli expression vector pET- 32a(+) plasmid, following which the soluble recombinant ALAS and ACL proteins were purified through nickel-affinity column chromatography. Through HPLC analysis of the enzyme reaction mixture, we confirmed the products of putative ALAS and ACL reaction as 5-aminolevulinic acid (5- ALA) and 5-ALA-CoA, respectively. The optimal pH for the putative ALAS reaction was 7.5, and for putative ACL reaction was 7.0, as confirmed by the colorimetric assay. Furthermore, pyridoxal 5􍿁-phosphate (PLP) was found to be an essential cofactor in the putative ALAS reaction, and ATP was a cofactor for the putative ACL catalysis. Finally, we also confirmed that the simultaneous treatment of putative ACL and putative ALAS enzymes resulted in the production of C5N compound from 5-ALA.

Citations

Citations to this article as recorded by  
  • The Secondary Metabolites from Genus Kitasatospora: A Promising Source for Drug Discovery
    Yuanjuan Wei, Guiyang Wang, Yan Li, Maoluo Gan
    Chemistry & Biodiversity.2024;[Epub]     CrossRef
  • Elucidation of the Late Steps during Hexacosalactone A Biosynthesis in Streptomyces samsunensis OUCT16-12
    He Duan, Fang Wang, Chuchu Zhang, Yujing Dong, Huayue Li, Fei Xiao, Wenli Li, Haruyuki Atomi
    Applied and Environmental Microbiology.2023;[Epub]     CrossRef
  • A Secondary Metabolic Enzyme Functioned as an Evolutionary Seed of a Primary Metabolic Enzyme
    Jun Kawaguchi, Hikaru Mori, Noritaka Iwai, Masaaki Wachi, Miriam Barlow
    Molecular Biology and Evolution.2022;[Epub]     CrossRef
  • Biosynthesis of Methoxymalonyl-acyl Carrier Protein (ACP) as an Extender Unit for Bafilomycin Polyketide in Streptomyces griseus DSM 2608
    Nguyen Phan Kieu Hanh, Jae Yoon Hwang, Doo Hyun Nam
    Biotechnology and Bioprocess Engineering.2018; 23(6): 693.     CrossRef
Research Support, Non-U.S. Gov't
An Improved Method for Extracting Bacteria from Soil for High Molecular Weight DNA Recovery and BAC Library Construction
Juan Liu , Jingquan Li , Li Feng , Hui Cao , Zhongli Cui
J. Microbiol. 2010;48(6):728-733.   Published online January 9, 2011
DOI: https://doi.org/10.1007/s12275-010-0139-1
  • 39 View
  • 0 Download
  • 34 Scopus
AbstractAbstract
Separation of bacterial cells from soil is a key step in the construction of metagenomic BAC libraries with large DNA inserts. Our results showed that when combined with sodium pyro-phosphate and homogenization for soil dispersion, sucrose density gradient centrifugation (SDGC) was more effective at separating bacteria from soil than was low speed centrifugation (LSC). More than 70% of the cells, along with some soil colloids, were recovered with one round of centrifugation. A solution of 0.8% NaCl was used to resuspend these cell and soil pellets for purification with nycodenz density gradient centrifugation (NDGC). After purification, more than 30% of the bacterial cells in the primary soil were extracted. This procedure effectively removed soil contamination and yielded sufficient cells for high molecular weight (HMW) DNA isolation. Ribosomal intergenic spacer analysis (RISA) showed that the microbial community structure of the extracted cells was similar to that of the primary soil, suggesting that this extraction procedure did not significantly change the the soil bacteria community structure. HMW DNA was isolated from bacterial cells extracted from red soil for metagenomic BAC library construction. This library contained DNA inserts of more than 200 Mb with an average size of 75 kb.

Journal of Microbiology : Journal of Microbiology
TOP