Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "RNP"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Development of a CRISPR/Cas9 RNP-mediated genetic engineering system in Paecilomyces variotii
Hui-Gang Han, Rutuja Nandre, Hyerang Eom, Yeon-Jae Choi, Hyeon-Su Ro
J. Microbiol. 2025;63(6):e2502011.   Published online June 30, 2025
DOI: https://doi.org/10.71150/jm.2502011
  • 1,022 View
  • 42 Download
AbstractAbstract PDFSupplementary Material

A thermophilic strain of Paecilomyces variotii (MR1), capable of surviving temperatures above 40°C, was isolated from a paper mill and investigated as a host for heterologous protein production. To prevent environmental dissemination of spores, UV mutagenesis was employed to create a conidia-deficient strain, UM7. This strain underwent gene editing using Cas9-gRNA ribonucleoprotein (RNP) with HR donor DNA fragments, incorporating promoter sequences amplified from the genomic DNA of P. variotii (PH4, PP2, PS8, Ptub, Ptef1, and PgpdA), along with a signal sequence-tagged eGFP, flanked by 5’-upstream (336 bp) and 3’-downstream (363 bp) regions of pyrG. Co-transformation of HR donor DNA with RNP into protoplasts yielded 48 mutant pyrG transformants capable of surviving in the presence of 5-fluoroorotic acid (5-FOA). Sequence analysis identified 16 of the 48 pyrG-disrupted mutants carrying complete HR donor DNAs with the six different promoter sequences, indicating successful homology-directed repair (HDR). Evaluation of promoter strength revealed that PgpdA was the most effective for intracellular GFP production; however, it resulted in negligible extracellular GFP signal under all promoter conditions. A newly edited strain with an HDR integration module connecting PgpdA directly to eGFP, without the signal sequence, exhibited enhanced GFP expression in both mycelial cells and culture broth, suggesting that the signal peptide negatively affect protein expression and secretion. This work represents the first successful RNP-mediated gene editing in P. variotii, contributing to the application of this thermophilic fungus in protein production.

Research Support, Non-U.S. Gov't
Rapid Discrimination of Potato Scab-Causing Streptomyces Species Based on the RNase P RNA Gene Sequences
Hang-Yeon Weon , Jaekyeong Song , Byung-Yong Kim , On-Suk Hur , In-Cheol Park , Joo-Won Suh
J. Microbiol. 2011;49(5):791-796.   Published online November 9, 2011
DOI: https://doi.org/10.1007/s12275-011-1279-7
  • 129 View
  • 0 Download
AbstractAbstract
Scab disease significantly damages potatoes and other root crops. Some Streptomyces species have been reported as potato-scab pathogens. Identification of the phytopathogenic Streptomyces is mainly done on the basis of the 16S rRNA gene, but use of this gene has some limitations for discriminating these strains because they share high similarities of 16S rRNA gene sequences. We tested the RNase P RNA (rnpB) gene as a taxonomic marker to clarify the relationship among closely related scab-causing Streptomyces strains. The rnpB genes were analyzed for 41 strains including 9 isolates from Jeju, Korea. There were 4 highly variable regions including nucleotide gaps in the rnpB genes. Interspecies similarity of the rnpB gene in tested Streptomyces strains was lower than about 97%, while the intraspecies similarity was higher than about 98%. Phylogenetic analysis demonstrated that the rnpB tree has similar topology to the 16S rRNA gene tree, but produces a more divergent phyletic lineage. These results revealed that the rnpB gene could be used as a powerful taxonomic tool for rapid differentiation of closely related Streptomyces species. In addition, it was also suggested that the variable regions marked as α, β, γ, and δ in the rnpB gene could be useful markers for the detection of specific Streptomyces species.
The Schizosaccharomyces pombe Proteins that Bind to the Human HnRNPA1 Winner RNA
Kim , Jeong Kook
J. Microbiol. 1997;35(4):327-333.
  • 112 View
  • 0 Download
AbstractAbstract
Although extensively characterized in human cells, no heterogeneous nuclear ribonucleoprotein(hnRNP) has been found in the fission yeast Schizosaccharomyces pombe which is amenable to genetic studies and more similar to mammals than Saccharomyces cerevisiae is in terms of RNA processing. As a first step to characterize hnRNPs from S. pombe, attempt was made to find human hnRNP A1 homologs from S. pombe. The RNA molecule (A1 winner) containing the consensus high-affinity hnRNP A1 binding site (UAGGGA/U) was synthesized in vitro and used in an ultraviolet(UV) light-induced protein-RNA cross-linking assay. A number of S, pombe proteins bound to the A1 winner RNA. An approximately 50-kDa protein(p50) cross-linked more efficiently to the A1 winner RNA than other proteins. The p50 protein did not cross-link to a nonspecific RNA, but rather to the A1-5’ SS RNA in which the consensus 5’ splice junction sites of S. pombe introns were abolished. This suggests that the p50 protein, however, did not bind to the single-stranded DNA to shich the human hnRNP A1 could bind and be eluted with 0.5M NaCl. Further analysis should reveal more features of this RNA-binding protein.

Journal of Microbiology : Journal of Microbiology
TOP