Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
27 "RRE"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism
Viridiana Alejandre-Castañeda , J. Alberto Patiño-Medina , Marco I. Valle-Maldonado , Alexis García , Rafael Ortiz-Alvarado , León F. Ruíz-Herrera , Karla Viridiana Castro-Cerritos , Joel Ramírez-Emiliano , Martha I. Ramírez-Díaz , Victoriano Garre , Soo Chan Lee , Víctor Meza-Carmen
J. Microbiol. 2023;61(12):1043-1062.   Published online December 19, 2023
DOI: https://doi.org/10.1007/s12275-023-00096-8
  • 23 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.
The Regulation of Phosphorus Release by Penicillium chrysogenum in Different Phosphate via the TCA Cycle and Mycelial Morphology
Liyan Wang , Da Tian , Xiaoru Zhang , Mingxue Han , Xiaohui Cheng , Xinxin Ye , Chaochun Zhang , Hongjian Gao , Zhen Li
J. Microbiol. 2023;61(8):765-775.   Published online September 4, 2023
DOI: https://doi.org/10.1007/s12275-023-00072-2
  • 19 View
  • 0 Download
AbstractAbstract
Phosphate-solubilizing fungi (PSF) efficiently dissolve insoluble phosphates through the production of organic acids. This study investigates the mechanisms of organic acid secretion by PSF, specifically Penicillium chrysogenum, under tricalcium phosphate ( Ca3(PO4)2, Ca–P) and ferric phosphate ( FePO4, Fe–P) conditions. Penicillium chrysogenum exhibited higher phosphorus (P) release efficiency from Ca-P (693.6 mg/L) than from Fe–P (162.6 mg/L). However, Fe–P significantly enhanced oxalic acid (1193.7 mg/L) and citric acid (227.7 mg/L) production by Penicillium chrysogenum compared with Ca–P (905.7 and 3.5 mg/L, respectively). The presence of Fe–P upregulated the expression of genes and activity of enzymes related to the tricarboxylic acid cycle, including pyruvate dehydrogenase and citrate synthase. Additionally, Fe–P upregulated the expression of chitinase and endoglucanase genes, inducing a transformation of Penicillium chrysogenum mycelial morphology from pellet to filamentous. The filamentous morphology exhibited higher efficiency in oxalic acid secretion and P release from Fe–P and Ca–P. Compared with pellet morphology, filamentous morphology enhanced P release capacity by > 40% and > 18% in Ca–P and Fe–P, respectively. This study explored the strategies employed by PSF to improve the dissolution of different insoluble phosphates.
Description of Fervidibacillus gen. nov. with Two Species, Fervidibacillus albus sp. nov., and Fervidibacillus halotolerans sp. nov., Isolated from Tidal Flat Sediments and Emendation of Misclassificed Taxa in the Genus Caldibacillus
Sung&# , Mi&# , Hyun&# , Kae Kyoung Kwon
J. Microbiol. 2023;61(2):175-187.   Published online February 17, 2023
DOI: https://doi.org/10.1007/s12275-023-00022-y
  • 17 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Two Gram-stain-positive, motile, endospore-forming, facultatively anaerobic strains, designated MEBiC13591T and MEBiC13594T, were isolated from tidal flat sediment of the Incheon City on the west coast of Korea. Growth of both novel strains was observed at pH 5–9 (optimum, pH 7–7.5), and in 0–8% NaCl (optimum, 2% for MEBiC13591T and 3% for MEBiC13594T). Strains MEBiC13591T and MEBiC13594T grew optimally at 50 °C, (37.5–56.1 °C) and 44 °C (20.7–50.7 °C), respectively. The main cellular fatty acids of strain MEBiC13591T were iso-C15: 0, anteiso-C15: 0, iso-C16: 0, iso-C17: 0 and anteiso-C17: 0, while those for strain MEBiC13594T were C14: 0, iso-C14: 0, iso-C15: 0, anteiso-C15: 0 and C16: 0. In both taxa, the major isoprenoid was MK-7. The genomic DNA G + C contents were 34.1 and 37.0 mol% for MEBiC13591T and MEBiC13594T, respectively. A 16S rRNA gene sequence analysis revealed that the novel strains showed high similarity with members of the genera Aeribacillus (95.0%) and Caldibacillus (93.5–94.5%); however, showed lower than 90% with Caldibacillus debilis TfT. Phylogenetic and Phylogenomic analysis revealed that two novel strains comprised distinct phyletic line with members formerly assigned to Caldibacillus. Based on genomic indices, such as AAI and ANI, members formerly affiliated with Caldibacillus and Bacillus as well as the novel strains should be classified into five independent genera. Based on the phenotypic, genomic and biochemical data, strains MEBiC13591T and MEBiC13594T represent two novel species in the novel genus, for which the names Fervidibacillus albus gen. nov., sp. nov. ( MEBiC13591T [= KCCM 43317T = KCTC 43181T = JCM 33662T = MCCC 1K04565T]), and Fervidibacillus halotolerans sp. nov. ( MEBiC13594T [= KCTC 43182T = JCM 34001T]) are proposed. Three additional genera Caldifermentibacillus, Palidibacillus, and Perspicuibacillus are also proposed by reclassification of the several species with valid names that formerly affiliated with the genera Caldibacillus.
Predicting quorum sensing peptides using stacked generalization ensemble with gradient boosting based feature selection
Muthusaravanan Sivaramakrishnan , Rahul Suresh , Kannapiran Ponraj
J. Microbiol. 2022;60(7):756-765.   Published online June 22, 2022
DOI: https://doi.org/10.1007/s12275-022-2044-9
  • 18 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Bacteria exist in natural environments for most of their life as complex, heterogeneous, and multicellular aggregates. Under these circumstances, critical cell functions are controlled by several signaling molecules known as quorum sensing (QS) molecules. In Gram-positive bacteria, peptides are deployed as QS molecules. The development of antibodies against such QS molecules has been identified as a promising therapeutic intervention for bacterial control. Hence, the identification of QS peptides has received considerable attention. Availability of a fast and reliable predictive model to effectively identify QS peptides can help the existing high throughput experiments. In this study, a stacked generalization ensemble model with Gradient Boosting Machine (GBM)-based feature selection, namely EnsembleQS was developed to predict QS peptides with high accuracy. On selected GBM features (791D), the EnsembleQS outperformed finely tuned baseline classifiers and demonstrated robust performance, indicating the superiority of the model. The accuracy of EnsembleQS is 4% higher than those resulting from ensemble model on hybrid dataset. When evaluating an independent data set of 40 QS peptides, the EnsembleQS model showed an accuracy of 93.4% with Matthew’s Correlation Coefficient (MCC) and area under the ROC curve (AUC) values 􀁇􀁇of 0.91 and 0.951, respectively. These
results
suggest that EnsembleQS will be a useful computational framework for predicting QS peptides and will efficiently support proteomics research. The source code and all datasets used in this study are publicly available at https:// github.com/proteinexplorers/EnsembleQS.
Review
COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity
Mi-Hyun Lee , Bum-Joon Kim
J. Microbiol. 2022;60(3):321-334.   Published online February 14, 2022
DOI: https://doi.org/10.1007/s12275-022-1621-2
  • 24 View
  • 0 Download
  • 12 Citations
AbstractAbstract
Severe acute respiratory syndrome coronavirus 2 virus (SARSCoV- 2) infection, which causes coronavirus disease 2019 (COVID-19), has led to many cases and deaths worldwide. Therefore, a number of vaccine candidates have been developed to control the COVID-19 pandemic. Of these, to date, 21 vaccines have received emergency approval for human use in at least one country. However, the recent global emergence of SARS-CoV-2 variants has compromised the efficacy of the currently available vaccines. To protect against these variants, the use of vaccines that modulate T cell-mediated immune responses or innate immune cell memory function, termed trained immunity, is needed. The major advantage of a vaccine that uses bacteria or viral systems for the delivery of COVID-19 antigens is the ability to induce both T cell-mediated and humoral immune responses. In addition, such vaccine systems can also exert off-target effects via the vector itself, mediated partly through trained immunity; compared to other vaccine platforms, suggesting that this approach can provide better protection against even vaccine escape variants. This review presents the current status of the development of COVID-19 vaccines based on recombinant viral and bacterial delivery systems. We also discuss the current status of the use of licensed live vaccines for other infections, including BCG, oral polio and MMR vaccines, to prevent COVID-19 infections.
Journal Articles
Effects of rehydration on physiological and transcriptional responses of a water-stressed rhizobium
Jie Zhu , Xin Jiang , Dawei Guan , Yaowei Kang , Li Li , Fengming Cao , Baisuo Zhao , Mingchao Ma , Ji Zhao , Jun Li
J. Microbiol. 2022;60(1):31-46.   Published online November 26, 2021
DOI: https://doi.org/10.1007/s12275-022-1325-7
  • 20 View
  • 0 Download
  • 5 Citations
AbstractAbstract
As a microsymbiont of soybean, Bradyrhizobium japonicum plays an important role in symbiotic nitrogen fixation and sustainable agriculture. However, the survival of B. japonicum cells under water-deplete (e.g., drought) and water-replete (e.g., flood) conditions is a major concern affecting their nitrogen-fixing ability by establishing the symbiotic relationship with the host. In this study, we isolated a water stress tolerant rhizobium from soybean root nodules and tested its survival under water-deplete conditions. The rhizobium was identified as Bradyrhizobium japonicum and named strain 5038. Interestingly, both plate counting and live/dead fluorescence staining assays indicate that a number of viable but non-culturable cells exist in the culture medium upon the rehydration process which could cause dilution stress. Bradyrhizobium japonicum 5038 cells increased production of exopolysaccharide (EPS) and trehalose when dehydrated, suggesting that protective responses were stimulated. As expected, cells reduced their production upon the subsequent rehydration. To examine differential gene expression of B. japonicum 5038 when exposed to water-deplete and subsequent waterreplete conditions, whole-genome transcriptional analysis was performed under 10% relative humidity (RH), and subsequent 100% RH, respectively. A total of 462 differentially expressed genes (DEGs, > 2.0-fold) were identified under the 10% RH condition, while 3,776 genes showed differential expression during the subsequent rehydration (100% RH) process. Genes involved in signal transduction, inorganic ion transport, energy production and metabolisms of carbohydrates, amino acids, and lipids were far more up-regulated than downregulated in the 10% RH condition. Notably, trehalose biosynthetic genes (otsAB, treS, and treYZ), genes ligD, oprB, and a sigma factor rpoH were significantly induced by 10% RH. Under the subsequent 100% RH condition, genes involved in transcription, translation, cell membrane regulation, replication and repair, and protein processing were highly up-regulated. Interestingly, most of 10%-RH inducible genes displayed rehydration-repressed, except three genes encoding heat shock (Hsp20) proteins. Therefore, this study provides molecular evidence for the switch of gene expression of B. japonicum cells when encountered the opposite water availability from water-deplete to water-replete conditions.
Structure of bacterial and eukaryote communities reflect in situ controls on community assembly in a high-alpine lake
Eli Michael S. Gendron , John L. Darcy , Katherinia Hell , Steven K. Schmidt
J. Microbiol. 2019;57(10):852-864.   Published online August 3, 2019
DOI: https://doi.org/10.1007/s12275-019-8668-8
  • 10 View
  • 0 Download
  • 9 Citations
AbstractAbstract
Recent work suggests that microbial community composition in high-elevation lakes is significantly influenced by microbes entering from upstream terrestrial and aquatic habitats. To test this idea, we conducted 18S and 16S rDNA surveys of microbial communities in a high-alpine lake in the Colorado Rocky Mountains. We compared the microbial community of the lake to water entering the lake and to uphill soils that drain into the lake. Utilizing hydrological and abiotic data, we identified potential factors controlling microbial diversity and community composition. Results show a diverse community entering the lake at the inlet with a strong resemblance to uphill terrestrial and aquatic communities. In contrast, the lake communities (water column and outlet) showed significantly lower diversity and were significantly different from the inlet communities. Assumptions of neutral community assembly poorly predicted community differences between the inlet and lake, whereas “variable selection” and “dispersal limitation” were predicted to dominate. Similarly, the lake communities were correlated with discharge rate, indicating that longer hydraulic residence times limit dispersal, allowing selective pressures within the lake to structure communities. Sulfate and inorganic nitrogen and phosphorus concentrations correlated with community composition, indicating “bottom up” controls on lake community assembly. Furthermore, bacterial community composition was correlated with both zooplankton density and eukaryotic community composition, indicating biotic controls such as “top-down” interactions also contribute to community assembly in the lake. Taken together, these community analyses suggest that deterministic biotic and abiotic selection within the lake coupled with dispersal limitation structures the microbial communities in Green Lake 4.
Co-occurrence patterns between phytoplankton and bacterioplankton across the pelagic zone of Lake Baikal during spring
Ivan S. Mikhailov , Yuri S. Bukin , Yulia R. Zakharova , Marina V. Usoltseva , Yuri P. Galachyants , Maria V. Sakirko , Vadim V. Blinov , Yelena V. Likhoshway
J. Microbiol. 2019;57(4):252-262.   Published online March 30, 2019
DOI: https://doi.org/10.1007/s12275-019-8531-y
  • 15 View
  • 0 Download
  • 16 Citations
AbstractAbstract
Phytoplankton and bacterioplankton play a key role in carbon cycling of aquatic ecosystems. In this study, we found that co-occurrence patterns between different types of phytoplankton, bacterioplankton, and environmental parameters in Lake Baikal during spring were different over the course of three consecutive years. The composition of phytoplankton and bacterial communities was investigated using microscopy and 16S rRNA gene pyrosequencing, respectively. Non-metric multidimensional scaling (NMDS) revealed a relationship between the structure of phytoplankton and bacterial communities and temperature, location, and sampling year. Associations of bacteria with diatoms, green microalgae, chrysophyte, and cryptophyte were identified using microscopy. Cluster analysis revealed similar correlation patterns between phytoplankton abundance, number of attached bacteria, ratio of bacteria per phytoplankton cell and environmental parameters. Positive and negative correlations between different species of phytoplankton, heterotrophic bacteria and environmental parameters may indicate mutualistic or competitive relationships between microorganisms and their preferences to the environment.
Review
REVIEW] H5 influenza, a global update
Rhodri Harfoot , Richard J. Webby
J. Microbiol. 2017;55(3):196-203.   Published online February 28, 2017
DOI: https://doi.org/10.1007/s12275-017-7062-7
  • 17 View
  • 0 Download
  • 52 Citations
AbstractAbstract
H5 influenza viruses have caused much alarm globally due to their high pathogenic potential. As yet we have not seen sustained spread of the virus amongst humans despite a high prevalence of the virus in avian populations. Nevertheless, isolated human cases of infection have demonstrated high mortality and there are substantial efforts being taken to monitor the evolution of the virus and to undertake preparedness activities. Here we review and discuss the evolution of the A/goose/Guangdong/1/96 (H5N1) virus with emphasis on recent events.
Research Support, Non-U.S. Gov't
Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis
Thinh-Phat Cao , Joong-Su Kim , Mi-Hee Woo , Jin Myung Choi , Youngsoo Jun , Kun Ho Lee , Sung Haeng Lee
J. Microbiol. 2016;54(4):311-321.   Published online April 1, 2016
DOI: https://doi.org/10.1007/s12275-016-6029-4
  • 13 View
  • 0 Download
  • 7 Citations
AbstractAbstract
2-deoxyribose-5-phosphate aldolase (DERA) is a class I aldolase that catalyzes aldol condensation of two aldehydes in the active site, which is particularly germane in drug manufacture. Structural and biochemical studies have shown that the active site of DERA is typically loosely packed and displays broader substrate specificity despite sharing conserved folding architecture with other aldolases. The most distinctive structural feature of DERA compared to other aldolases is short and flexible C-terminal region. This region is also responsible for substrate recognition. Therefore, substrate tolerance may be related to the C-terminal structural features of DERA. Here, we determined the crystal structures of full length and C-terminal truncated DERA from Streptococcus suis (SsDERA). In common, both contained the typical (α/β)8 TIM-barrel fold of class I aldolases. Surprisingly, C-terminal truncation
result
ing in missing the last α9 and β8 secondary elements, allowed DERA to maintain activity comparable to the fulllength enzyme. Specifically, Arg186 and Ser205 residues at the C-terminus appeared mutually supplemental or less indispensible for substrate phosphate moiety recognition. Our results suggest that DERA might adopt a shorter C-terminal region than conventional aldolases during evolution pathway, resulting in a broader range of substrate tolerance through active site flexibility.
Review
Replicating poxviruses for human cancer therapy
Manbok Kim
J. Microbiol. 2015;53(4):209-218.   Published online April 8, 2015
DOI: https://doi.org/10.1007/s12275-015-5041-4
  • 17 View
  • 0 Download
  • 26 Citations
AbstractAbstract
Naturally occurring oncolytic viruses are live, replicationproficient viruses that specifically infect human cancer cells while sparing normal cell counterparts. Since the eradication of smallpox in the 1970s with the aid of vaccinia viruses, the vaccinia viruses and other genera of poxviruses have shown various degrees of safety and efficacy in pre-clinical or clinical application for human anti-cancer therapeutics. Furthermore, we have recently discovered that cellular tumor suppressor genes are important in determining poxviral oncolytic tropism. Since carcinogenesis is a multi-step process involving accumulation of both oncogene and tumor suppressor gene abnormalities, it is interesting that poxvirus can exploit abnormal cellular tumor suppressor signaling for its oncolytic specificity and efficacy. Many tumor suppressor genes such as p53, ATM, and RB are known to play important roles in genomic fidelity/maintenance. Thus, tumor suppressor gene abnormality could affect host genomic integrity and likely disrupt intact antiviral networks due to accumulation of genetic defects, which would in turn result in oncolytic virus susceptibility. This review outlines the characteristics of oncolytic poxvirus strains, including vaccinia, myxoma, and squirrelpox virus, recent progress in elucidating the molecular connection between oncogene/tumor suppressor gene abnormalities and poxviral oncolytic tropism, and the associated preclinical/clinical implications. I would also like to propose future directions in the utility of poxviruses for oncolytic virotherapy.
Research Support, Non-U.S. Gov'ts
Variations of SSU rDNA Group I Introns in Different Isolates of Cordyceps militaris and the Loss of an Intron during Cross-Mating
Tiantian Lian , Tao Yang , Junde Sun , Suping Guo , Huaijun Yang , Caihong Dong
J. Microbiol. 2014;52(8):659-666.   Published online July 4, 2014
DOI: https://doi.org/10.1007/s12275-014-3681-4
  • 11 View
  • 0 Download
  • 7 Citations
AbstractAbstract
Cordyceps militaris, the type species of genus Cordyceps, is one of the most popular mushrooms and a nutraceutical in eastern Asia. It is considered a model organism for the study of Cordyceps species because it can complete its life cycle when cultured in vitro. In the present study, the occurrence and sequence variation of SSU rDNA group I introns, Cmi.S943 and Cmi.S1199, among different isolates of C. militaris were analyzed. Based on the secondary structure predictions, the Cmi.S943 intron has been placed in subgroup IC1, and the Cmi.S1199 intron has been placed in subgroup IE. No significant similarity between Cmi.S943 and Cmi.S1199 suggested different origins. Three genotypes, based on the frequency and distribution of introns, were described to discriminate the 57 surveyed C. militaris strains. It was found that the genotype was related to the stroma characteristics. The stromata of all of the genotype II strains, which possessed only Cmi.S943, could produce perithecium. In contrast, the stromata of all genotype III strains, which had both Cmi.S943 and Cmi.S1199, could not produce perithecium. Cmi.S1199 showed the lowest level of intra-specific variation among the tested strains. Group I introns can be lost during strain cross-mating. Therefore, we presumed that during cross-mating and recombination, intron loss could be driven by positive Darwinian selection due to the energetic cost of transcribing long introns.
NOTE] Is The Biotransformation of Chlorinated Dibenzo-p-dioxins by Sphingomonas wittichii RW1 Governed by Thermodynamic Factors?
In-Hyun Nam , Hyo-Bong Hong , Stefan Schmidt
J. Microbiol. 2014;52(9):801-804.   Published online February 17, 2014
DOI: https://doi.org/10.1007/s12275-014-3424-6
  • 13 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Density functional theory (DFT) calculations were used to explore the relationship between the biotransformation of dibenzo-p-dioxin and selected chlorinated derivatives by resting cells of Sphingomonas wittichii RW1 and measuring the thermodynamic properties of the biotransformation substrates. Sphingomonas wittichii RW1 can aerobically catabolize dibenzo-p-dioxin as well as 2,7-dichloro-, 1,2,3-trichloro-, 1,2,3,4-tetrachloro-, and 1,2,3,4,7,8-hexachlorodibenzo-pdioxin; however, neither the 2,3,7-trichloro- nor the 1,2,3,7,8-pentachlorodibenzo-p-dioxin was transformed to its corresponding metabolic intermediate. The experimental biotransformation rates established were apparently governed by the selected thermodynamic properties of the substrates tested.
Bacterial Diversity and Composition of an Alkaline Uranium Mine Tailings-Water Interface
Nurul H. Khan , Viorica F. Bondici , Prabhakara G. Medihala , John R. Lawrence , Gideon M. Wolfaardt , Jeff Warner , Darren R. Korber
J. Microbiol. 2013;51(5):558-569.   Published online September 14, 2013
DOI: https://doi.org/10.1007/s12275-013-3075-z
  • 13 View
  • 0 Download
  • 14 Citations
AbstractAbstract
The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine watertailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.
Research Support, U.S. Gov't, Non-P.H.S.
NOTE] Fosmid Cloning, Nucleotide Sequence, and Characterization of a Beta-Lactamase Gene from Subsurface Isolates
Nurcan Vardar , Gönül Vardar-Schara
J. Microbiol. 2012;50(4):680-683.   Published online July 21, 2012
DOI: https://doi.org/10.1007/s12275-012-2139-9
  • 8 View
  • 0 Download
AbstractAbstract
A beta-lactamase gene was isolated for the first time from a terrestrial subsurface environment using a combined cultivation and direct cloning strategy. The gene, discovered from 24 m below land surface in Hawaii, was most similar to the penicillinase from Bacillus licheniformis. The resistance gene was confirmed via subcloning and its minimum inhibitory concentration values were measured against several test betalactam antibiotics. This study extends the knowledge on resistance to antimicrobials, which may help the efforts to minimize their future threat.

Journal of Microbiology : Journal of Microbiology
TOP