Search
- Page Path
-
HOME
> Search
Journal Articles
- Probiotic supplements alleviate gestational diabetes mellitus by restoring the diversity of gut microbiota: a study based on 16S rRNA sequencing
-
Qing-Xiang Zheng , Xiu-Min Jiang , Hai-Wei Wang , Li Ge , Yu-Ting Lai , Xin-Yong Jiang , Fan Chen , Ping-Ping Huang
-
J. Microbiol. 2021;59(9):827-839. Published online August 12, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1094-8
-
-
25
View
-
0
Download
-
14
Citations
-
Abstract
- Probiotics effectively prevent and improve metabolic diseases
such as diabetes by regulating the intestinal microenvironment
and gut microbiota. However, the effects of probiotics
in gestational diabetes mellitus are not clear. Here, we
showed that probiotic supplements significantly improved
fasting blood glucose in a gestational diabetes mellitus rat
model. To further understand the mechanisms of probiotics
in gestational diabetes mellitus, the gut microbiota were analyzed
via 16S rRNA sequencing. We found that compared
with the normal pregnant group, the gestational diabetes mellitus
rats had decreased diversity of gut microbiota. Moreover,
probiotic supplementation restored the diversity of the
gut microbiota in gestational diabetes mellitus rats, and the
gut microbiota structure tended to be similar to that of normal
pregnant rats. In particular, compared with gestational
diabetes mellitus rats, the abundance of Firmicutes and Actinobacteria
was higher after probiotic supplementation. Furthermore,
activating carbohydrate metabolism and membrane
transport pathways may be involved in the potential mechanisms
by which probiotic supplements alleviate gestational
diabetes mellitus. Overall, our results suggested that probiotic
supplementation might be a novel approach to restore the gut
microbiota of gestational diabetes mellitus rats and provided
an experimental evidence for the use of probiotic supplements
to treat gestational diabetes melitus.
- The putative C2H2 transcription factor RocA is a novel regulator of development and secondary metabolism in Aspergillus nidulans
-
Dong Chan Won , Yong Jin Kim , Da Hye Kim , Hee-Moon Park , Pil Jae Maeng
-
J. Microbiol. 2020;58(7):574-587. Published online April 22, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0083-7
-
-
15
View
-
0
Download
-
2
Citations
-
Abstract
- Multiple transcriptional regulators play important roles in
the coordination of developmental processes, including asexual
and sexual development, and secondary metabolism in the
filamentous fungus Aspergillus nidulans. In the present study,
we characterized a novel putative C2H2-type transcription
factor (TF), RocA, in relation to development and secondary
metabolism. Deletion of rocA increased conidiation and caused
defective sexual development. In contrast, the overexpression
of rocA exerted opposite effects on both phenotypes. Additionally,
nullifying rocA resulted in enhanced brlA expression
and reduced nsdC expression, whereas its overexpression
exerted the opposite effects. These results suggest that RocA
functions as a negative regulator of asexual development by
repressing the expression of brlA encoding a key asexual development
activator, but as a positive regulator of sexual development
by enhancing the expression of nsdC encoding a
pivotal sexual development activator. Deletion of rocA increased
the production of sterigmatocystin (ST), as well as the
expression of its biosynthetic genes, aflR and stcU. Additionally,
the expression of the biosynthetic genes for penicillin
(PN), ipnA and acvA, and for terrequinone (TQ), tdiB and
tdiE, was increased by rocA deletion. Thus, it appears that
RocA functions as a negative transcriptional modulator of the
secondary metabolic genes involved in ST, PN, and TQ biosynthesis.
Taken together, we propose that RocA is a novel
transcriptional regulator that may act either positively or negatively
at multiple target genes necessary for asexual and
sexual development and secondary metabolism.
TOP