Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Rnf"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Inferences in microbial structural signatures of acne microbiome and mycobiome
Jubin Kim , Taehun Park , Hye-Jin Kim , Susun An , Woo Jun Sul
J. Microbiol. 2021;59(4):369-375.   Published online February 10, 2021
DOI: https://doi.org/10.1007/s12275-021-0647-1
  • 51 View
  • 0 Download
  • 17 Web of Science
  • 18 Crossref
AbstractAbstract
Acne vulgaris, commonly known as acne, is the most common skin disorder and a multifactorial disease of the sebaceous gland. Although the pathophysiology of acne is still unclear, bacterial and fungal factors are known to be involved in. This study aimed to investigate whether the microbiomes and mycobiomes of acne patients are distinct from those of healthy subjects and to identify the structural signatures of microbiomes related to acne vulgaris. A total of 33 Korean female subjects were recruited (Acne group, n = 17; Healthy group, n = 16), and microbiome samples were collected swabbing the forehead and right cheek. To characterize the fungal and bacterial communities, 16S rRNA V4–V5 and ITS1 region, respectively, were sequenced and analysed using Qiime2. There were no significant differences in alpha and beta diversities of microbiomes between the Acne and Healthy groups. In comparison with the ratio of Cutibacterium to Staphylococcus, the acne patients had higher abundance of Staphylococcus compared to Cutibacterium than the healthy individuals. In network analysis with the dominant microorganism amplicon sequence variants (ASV) (Cutibacterium, Staphylococcus, Malassezia globosa, and Malassezia restricta) Cutibacterium acnes was identified to have hostile interactions with Staphylococcus and Malassezia globosa. Accordingly, this
results
suggest an insight into the differences in the skin microbiome and mycobiome between acne patients and healthy controls and provide possible microorganism candidates that modulate the microbiomes associated to acne vulgaris.

Citations

Citations to this article as recorded by  
  • Acne due to JAK inhibitors in inflammatory bowel disease
    Andrew Awad, Britt Christensen, Jonathan P Segal, Gayle Ross
    Frontline Gastroenterology.2025; 16(2): 166.     CrossRef
  • Amplicon-based analysis reveals link between adolescent acne and altered facial skin microbiome induced by negative emotional states
    Yu Chen, Lixia Peng, Yueying Li, Yusheng Peng, Siqi Dai, Kai Han, Jinge Xin
    Frontiers in Cellular and Infection Microbiology.2025;[Epub]     CrossRef
  • Interações entre malassezia restricta e o micobioma humano: uma perspectiva abrangente
    Maria Vitória Cavalheiro Berlofa, Ana Carolina de Oliveira Ramos Siqueira, Yara Natércia Lima Faustino de Maria, Rafaela de Campos Oliveira, Paulo Salarrola Takao, Ana Clara da Silva, Milena Coutinho Natucci, Fabiano Bezerra Menegidio, Daniela Leite Jabes
    Revista Científica Multidisciplinar Núcleo do Conhecimento.2024; : 21.     CrossRef
  • Guidelines of care for the management of acne vulgaris
    Rachel V. Reynolds, Howa Yeung, Carol E. Cheng, Fran Cook-Bolden, Seemal R. Desai, Kelly M. Druby, Esther E. Freeman, Jonette E. Keri, Linda F. Stein Gold, Jerry K.L. Tan, Megha M. Tollefson, Jonathan S. Weiss, Peggy A. Wu, Andrea L. Zaenglein, Jung Min H
    Journal of the American Academy of Dermatology.2024; 90(5): 1006.e1.     CrossRef
  • Microenvironmental host–microbe interactions in chronic inflammatory skin diseases
    Lene Bay, Gregor Borut Jemec, Hans Christian Ring
    APMIS.2024; 132(12): 974.     CrossRef
  • Microbiome: Role in Inflammatory Skin Diseases
    Xue-Er Zhang, Pai Zheng, Sheng-Zhen Ye, Xiao Ma, E Liu, Yao-Bin Pang, Qing-Ying He, Yu-Xiao Zhang, Wen-Quan Li, Jin-Hao Zeng, Jing Guo
    Journal of Inflammation Research.2024; Volume 17: 1057.     CrossRef
  • Evaluation of the Effects of Age, Sex, and Dexpanthenol-Containing Skin Care on the Facial and Body Skin Microbiome
    Zainab Qaizar, Raffaella de Salvo, Gregor Bieri, Katrin Unbereit, Shannon Montgomery, Erwan Peltier
    Cosmetics.2024; 11(6): 213.     CrossRef
  • New insights into the characteristic skin microorganisms in different grades of acne and different acne sites
    Zitao Guo, Yuliang Yang, Qianjie Wu, Meng Liu, Leyuan Zhou, Liang Zhang, Dake Dong
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Distinct skin microbiome modulation following different topical acne treatments in mild acne vulgaris patients: A randomized, investigator‐blinded exploratory study
    Chanidapa Wongtada, Pinidphon Prombutara, Pravit Asawanonda, Nopadon Noppakun, Chanat Kumtornrut, Tanittha Chatsuwan
    Experimental Dermatology.2023; 32(6): 906.     CrossRef
  • A cross‐sectional cohort study on the skin microbiota in patients with different acne durations
    Lang Sun, Qingqun Wang, Huan Wang, Jing Huang, Zheng Yu
    Experimental Dermatology.2023; 32(12): 2102.     CrossRef
  • Truncal acne following JAK inhibitor use in vitiligo with rare opportunistic fungal infections: Two case reports
    Jee Yun Doh, Piyapat Rintarhat, Won Hee Jung, Hei Sung Kim
    JAAD Case Reports.2023; 37: 123.     CrossRef
  • New Normal Mask-Wearing and Its Impact on Underneath Skin Microbiome: A Cross-Sectional Study in Mild Acne Vulgaris Patients
    Chanidapa Wongtada, Thanaporn Puaratana-arunkon, Pinidphon Prombutara, Pravit Asawanonda, Nopadon Noppakun, Chanat Kumtornrut, Tanittha Chatsuwan
    Skin Appendage Disorders.2022; 8(5): 376.     CrossRef
  • Truncal Acne: An Overview
    Yu Ri Woo, Hei Sung Kim
    Journal of Clinical Medicine.2022; 11(13): 3660.     CrossRef
  • Skin microbiome in acne vulgaris, skin aging, and rosacea
    Yu-Ching Weng, Yi-Ju Chen
    Dermatologica Sinica.2022; 40(3): 129.     CrossRef
  • Infant Mode of Delivery Shapes the Skin Mycobiome of Prepubescent Children
    Yan-Ren Wang, Ting Zhu, Fan-Qi Kong, Yuan-Yuan Duan, Carlos Galzote, Zhe-Xue Quan, Jan Claesen, Laura Tipton
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • A split face study on the effect of an anti-acne product containing fermentation products of Enterococcus faecalis CBT SL-5 on skin microbiome modification and acne improvement
    Hye Sung Han, Sun Hye Shin, Bo-Yun Choi, Nayeon Koo, Sanghyun Lim, Dooheon Son, Myung Jun Chung, Kui Young Park, Woo Jun Sul
    Journal of Microbiology.2022; 60(5): 488.     CrossRef
  • Genome of Malassezia arunalokei and Its Distribution on Facial Skin
    Yong-Joon Cho, Taeyune Kim, Daniel Croll, Minji Park, Donghyeun Kim, Hye Lim Keum, Woo Jun Sul, Won Hee Jung, Teresa R. O'Meara
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Features of the Skin Microbiota in Common Inflammatory Skin Diseases
    Iva Ferček, Liborija Lugović-Mihić, Arjana Tambić-Andrašević, Diana Ćesić, Ana Gverić Grginić, Iva Bešlić, Marinka Mravak-Stipetić, Iva Mihatov-Štefanović, Ana-Marija Buntić, Rok Čivljak
    Life.2021; 11(9): 962.     CrossRef
Comparative genomic analysis of Geosporobacter ferrireducens and its versatility of anaerobic energy metabolism
Man-Young Jung , So-Jeong Kim , Jong-Geol Kim , Heeji Hong , Joo-Han Gwak , Soo-Je Park , Yang-Hoon Kim , Sung-Keun Rhee
J. Microbiol. 2018;56(5):365-371.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7451-6
  • 53 View
  • 0 Download
  • 8 Crossref
AbstractAbstract
Members of the family Clostridiaceae within phylum Firmicutes are ubiquitous in various iron-reducing environments. However, genomic data on iron-reducing bacteria of the family Clostridiaceae, particularly regarding their environmental distribution, are limited. Here, we report the analysis and comparison of the genomic properties of Geosporobacter ferrireducens IRF9, a strict anaerobe that ferments sugars and degrades toluene under iron-reducing conditions, with those of the closely related species, Geosporobacter subterraneus DSM 17957. Putative alkyl succinate synthase-encoding genes were observed in the genome of strain IRF9 instead of the typical benzyl succinate synthase-encoding genes. Canonical genes associated with iron reduction were not observed in either genome. The genomes of strains IRF9 and DMS 17957 harbored genes for acetogenesis, that encode two types of Rnf complexes mediating the translocation of H+ and Na+ ions, respectively. Strain IRF9 harbored two different types of ATPases (Na+-dependent F-type ATPase and H+- dependent V-type ATPase), which enable full exploitation of ion gradients. The versatile energy conservation potential of strain IRF9 promotes its survival in various environmental conditions.

Citations

Citations to this article as recorded by  
  • Promoting effects and mechanisms of common iron oxides on corrosion of carbon steel induced by methanogenic microbiota
    Jianping Wu, Weidong Zhang, Shanyu Xie, Zhaoshou Wang, Yuanpeng Wang
    Journal of Environmental Chemical Engineering.2025; 13(2): 115769.     CrossRef
  • Enclosure restoration regulates epiphytic microbial communities involved in carbon sequestration in a restored urban lake: A new insight from the stability of dissolved organic matter
    Siwen Hu, Dayong Zhao, Rujia He, Xiaojian Sun, Jin Zeng
    Journal of Cleaner Production.2025; 501: 145295.     CrossRef
  • Co-exposure of microplastics and polychlorinated biphenyls strongly influenced the cycling processes of typical biogenic elements in anoxic soil
    Guangxue Xie, Qian Hou, Lianzhen Li, Yan Xu, Shaochong Liu, Xilin She
    Journal of Hazardous Materials.2024; 465: 133277.     CrossRef
  • A review on microbial diversity and genetic markers involved in methanogenic degradation of hydrocarbons: futuristic prospects of biofuel recovery from contaminated regions
    Kriti Sengupta, Siddhartha Pal
    Environmental Science and Pollution Research.2021; 28(30): 40288.     CrossRef
  • Iron and total organic carbon shape the spatial distribution pattern of sediment Fe(III) reducing bacteria in a volcanic lake, NE China
    Yue Zhan, Mengran Yang, Yu Zhang, Jian Yang, Weidong Wang, Lei Yan, Shuang Zhang
    World Journal of Microbiology and Biotechnology.2021;[Epub]     CrossRef
  • Maize straw biochar addition inhibited pentachlorophenol dechlorination by strengthening the predominant soil reduction processes in flooded soil
    Min Zhu, Xiaofei Lv, Ashley E. Franks, Philip C. Brookes, Jianming Xu, Yan He
    Journal of Hazardous Materials.2020; 386: 122002.     CrossRef
  • New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era
    Krisztián Laczi, Ágnes Erdeiné Kis, Árpád Szilágyi, Naila Bounedjoum, Attila Bodor, György Erik Vincze, Tamás Kovács, Gábor Rákhely, Katalin Perei
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Enrichment of Marinobacter sp. and Halophilic Homoacetogens at the Biocathode of Microbial Electrosynthesis System Inoculated With Red Sea Brine Pool
    Manal F. Alqahtani, Suman Bajracharya, Krishna P. Katuri, Muhammad Ali, Ala’a Ragab, Grégoire Michoud, Daniele Daffonchio, Pascal E. Saikaly
    Frontiers in Microbiology.2019;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP