Search
- Page Path
-
HOME
> Search
Journal Article
- Microbial metabolic responses and CO2 emissions differentiated by soil water content variation in subarctic tundra soils
-
Dockyu Kim , Namyi Chae , Mincheol Kim , Sungjin Nam , Tai Kyoung Kim , Ki-Tea Park , Bang Yong Lee , Eungbin Kim , Hyoungseok Lee
-
J. Microbiol. 2022;60(12):1130-1138. Published online November 24, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2378-3
-
-
21
View
-
0
Download
-
1
Citations
-
Abstract
- Recent rapid air temperature increases across the northernlatitude
tundra have prolonged permafrost thawing and snow
melting periods, resulting in increased soil temperature (Ts)
and volumetric soil water content (SWC). Under prolonged
soil warming at 8°C, Alaskan tundra soils were incubated in
a microcosm system and examined for the SWC differential
influence on the microbial decomposition activity of large
molecular weight (MW) humic substances (HS). When one
microcosm soil (AKC1-1) was incubated at a constant SWC
of 41% for 90 days (T = 90) and then SWC was gradually
decreased from 41% to 29% for another T = 90, the initial
HS was partly depolymerized. In contrast, in AKC1-2 incubated
at a gradually decreasing SWC from the initial 32% to
10% for T = 90 and then increasing to 27% for another T =
90, HS depolymerization was undetected. Overall, the microbial
communities in AKC1-1 could maintain metabolic
activity at sufficient and constant SWC during the initial T =
90 incubation. In contrast, AKC1-2 microbes may have been
damaged by drought stress during the drying SWC regimen,
possibly resulting in the loss of HS decomposition activity,
which did not recover even after re-wetting to an optimal
SWC range (20–40%). After T = 90, the CO2 production in
both treatments was attributed to the increased decomposition
of small-MW organic compounds (including aerobic
HS-degradative products) within an optimal SWC range. We
expect this study to provide new insights into the early effects
of warming- and topography-induced SWC variations on
the microbial contribution to CO2 emissions via HS decomposition
in northern-latitude tundra soil.
TOP