Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Saccharibacillus brassicae"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
miR-135b Aggravates Fusobacterium nucleatum-Induced Cisplatin Resistance in Colorectal Cancer by Targeting KLF13
Wei Zeng , Jia Pan , Guannan Ye
J. Microbiol. 2024;62(2):63-73.   Published online February 24, 2024
DOI: https://doi.org/10.1007/s12275-023-00100-1
  • 75 View
  • 1 Download
  • 6 Web of Science
  • 5 Crossref
AbstractAbstract
Cisplatin resistance is the main cause of colorectal cancer (CRC) treatment failure, and the cause has been reported to be related to Fusobacterium nucleatum (Fn) infection. In this study, we explored the role of Fn in regulating cisplatin resistance of CRC cells and its underlying mechanism involved. The mRNA and protein expressions were examined by qRT-PCR and western blot. Cell proliferation and cell apoptosis were assessed using CCK8 and flow cytometry assays, respectively. Dual-luciferase reporter gene assay was adopted to analyze the molecular interactions. Herein, our results revealed that Fn abundance and miR-135b expression were markedly elevated in CRC tissues, with a favorable association between the two. Moreover, Fn infection could increase miR-135b expression via a concentration-dependent manner, and it also enhanced cell proliferation but reduced apoptosis and cisplatin sensitivity by upregulating miR-135b. Moreover, KLF13 was proved as a downstream target of miR-135b, of which overexpression greatly diminished the promoting effect of miR-135b or Fn-mediated cisplatin resistance in CRC cells. In addition, it was observed that upstream 2.5 kb fragment of miR-135b promoter could be interacted by β-catenin/TCF4 complex, which was proved as an effector signaling of Fn. LF3, a blocker of β-catenin/TCF4 complex, was confirmed to diminish the promoting role of Fn on miR-135b expression. Thus, it could be concluded that Fn activated miR-135b expression through TCF4/β-catenin complex, thereby inhibiting KLF13 expression and promoting cisplatin resistance in CRC.

Citations

Citations to this article as recorded by  
  • miR-135b: A Key Role in Cancer Biology and Therapeutic Targets
    Yingchun Shao, Shuangshuang Zhang, Yuxin Pan, Zhan Peng, Yinying Dong
    Non-coding RNA Research.2025;[Epub]     CrossRef
  • Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies
    Zhuangzhuang Shi, Zhaoming Li, Mingzhi Zhang
    Journal of Translational Medicine.2024;[Epub]     CrossRef
  • Fusobacterium nucleatum: a novel regulator of antitumor immune checkpoint blockade therapy in colorectal cancer
    Mengjie Luo
    American Journal of Cancer Research.2024; 14(8): 3962.     CrossRef
  • Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer
    Sevag Hamamah, Andrei Lobiuc, Mihai Covasa
    International Journal of Molecular Sciences.2024; 25(16): 9026.     CrossRef
  • Identification of Penexanthone A as a Novel Chemosensitizer to Induce Ferroptosis by Targeting Nrf2 in Human Colorectal Cancer Cells
    Genshi Zhao, Yanying Liu, Xia Wei, Chunxia Yang, Junfei Lu, Shihuan Yan, Xiaolin Ma, Xue Cheng, Zhengliang You, Yue Ding, Hongwei Guo, Zhiheng Su, Shangping Xing, Dan Zhu
    Marine Drugs.2024; 22(8): 357.     CrossRef
Saccharibacillus brassicae sp. nov., an endophytic bacterium isolated from kimchi cabbage (Brassica rapa subsp. pekinensis) seeds
Lingmin Jiang , Chan Ju Lim , Song-Gun Kim , Jae Cheol Jeong , Cha Young Kim , Dae-Hyuk Kim , Suk Weon Kim , Jiyoung Lee
J. Microbiol. 2020;58(1):24-29.   Published online November 25, 2019
DOI: https://doi.org/10.1007/s12275-020-9346-6
  • 39 View
  • 0 Download
  • 12 Web of Science
  • 11 Crossref
AbstractAbstract
Strain ATSA2T was isolated from surface-sterilized kimchi cabbage (Brassica rapa subsp. pekinensis) seeds and represents a novel bacterium based on the polyphasic taxonomic approach. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ATSA2T formed a lineage within genus Saccharibacillus and was most closely to Saccharibacillus deserti WLG055T (98.1%) and Saccharibacillus qingshengii H6T (97.9%). The whole-genome of ATSA2T comprised a 5,619,468 bp of circular chromosome with 58.4% G + C content. The DNA-DNA relatedness values between strain ATSA2T and its closely related type strains S. deserti WLJ055T and S. qingshengii H6T were 26.0% and 24.0%, respectively. Multiple gene clusters associated with plant growth promotion activities (stress response, nitrogen and phosphorus metabolism, and auxin biosynthesis) were annotated in the genome. Strain ATSA2T was Gram-positive, endospore-forming, facultatively anaerobic, and rod-shaped. It grew at 15–37°C (optimum 25°C), pH 6.0–10.0 (optimum pH 8.0), and in the presence of 0–5% (w/v) NaCl (optimum 1%). The major cellular fatty acids (> 10%) of strain ATSA2T were anteiso- C15:0 and C16:0. MK-7 was the major isoprenoid quinone. The major polar lipids present were diphosphatidylglycerol, phosphatidylglycerol, and three unknown glycolipids. Based on its phylogenetic, genomic, phenotypic, and chemotaxonomic features, strain ATSA2T is proposed to represent a novel species of genus Saccharibacillus, for which the name is Saccharibacillus brassicae sp. nov. The type strain is ATSA2T (KCTC 43072T = CCTCC AB 2019223T).

Citations

Citations to this article as recorded by  
  • Improving plant salt tolerance through Algoriphagus halophytocola sp. nov., isolated from the halophyte Salicornia europaea
    Yuxin Peng, Dong Hyun Cho, Zalfa Humaira, Yu Lim Park, Ki Hyun Kim, Cha Young Kim, Jiyoung Lee
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Dasania phycosphaerae sp. nov., isolated from phytoplankton sample from the south coast of the Republic of Korea
    Yue Jiang, Yong Guan, Sungmo Kang, Mi-Kyung Lee, Ki-Hyun Kim, Zhun Li
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2T
    Lingmin Jiang, Jiyoon Seo, Yuxin Peng, Doeun Jeon, Soon Ju Park, Cha Young Kim, Pyoung Il Kim, Chul Hong Kim, Ju Huck Lee, Jiyoung Lee
    AMB Express.2023;[Epub]     CrossRef
  • Emticicia fluvialis sp. nov., a potential hormone-degrading bacterium isolated from Nakdong River, Republic of Korea
    Hyun-Sun Baek, Yong Guan, Min-Ju Kim, Yue Jiang, Mi-Kyung Lee, Ki-Hyun Kim, Jaeyoon Lee, Yuna Shin, Yoon-Ho Kang, Zhun Li
    Antonie van Leeuwenhoek.2023; 116(12): 1317.     CrossRef
  • Identification and genomic analysis of Pseudosulfitobacter koreense sp. nov. isolated from toxin-producing dinoflagellate Alexandrium pacificum
    Yue Jiang, Zhun Li
    Archives of Microbiology.2023;[Epub]     CrossRef
  • Gymnodinialimonas phycosphaerae sp. nov., a phycosphere bacterium isolated from Karlodinium veneficum
    Yuxin Peng, Lingmin Jiang, Yue Jiang, Jiyoon Seo, Doeun Jeon, Young-Min Kim, Zhun Li, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Flavobacterium endoglycinae sp. nov., an endophytic bacterium isolated from soybean (Glycine max L. cv. Gwangan) stems
    Jiyoon Seo, Yuxin Peng, Lingmin Jiang, Sang-Beom Lee, Rae-Dong Jeong, Soon Ju Park, Cha Young Kim, Man-Soo Choi, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Gymnodinialimonas ceratoperidinii gen. nov., sp. nov., isolated from rare marine dinoflagellate Ceratoperidinium margalefii
    Yue Jiang, Yuxin Peng, Hyeon Ho Shin, Hyun Jung Kim, Ki-Hyun Kim, Lingmin Jiang, Jiyoung Lee, Zhun Li
    Archives of Microbiology.2022;[Epub]     CrossRef
  • Flagellatimonas centrodinii gen. nov., sp. nov., a novel member of the family Nevskiaceae isolated from toxin-producing dinoflagellate Centrodinium punctatum
    Yue Jiang, Lingmin Jiang, Yuxin Peng, Ki-Hyun Kim, Hyeon Ho Shin, Young-Min Kim, Jiyoung Lee, Zhun Li
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Pedobacter endophyticus sp. nov., an endophytic bacterium isolated from Carex pumila
    Yuxin Peng, Lingmin Jiang, Jiyoon Seo, Zhun Li, Hanna Choe, Jae Cheol Jeong, Suk Weon Kim, Young-Min Kim, Cha Young Kim, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Neobacillus endophyticus sp. nov., an endophytic bacterium isolated from Selaginella involvens roots
    Lingmin Jiang, Myoung Hui Lee, Jae Cheol Jeong, Dae-Hyuk Kim, Cha Young Kim, Suk Weon Kim, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP