A novel bacterium, designated YYF0007T, was isolated from
an agar-degrading co-culture. The strain was found harboring
four CRISPR-Cas systems of two classes in the chromosome
and subsequently subjected to a study on polyphasic
taxonomy. Pairwise analyses of the 16S rRNA gene sequences
indicated that strain YYF0007T had highest 16S rRNA gene
sequence similarity (92.2%) to Jiulongibacter sediminis JN-
14-9T. The phylogenomic trees based on the 16S rRNA gene
and 269 single-copy orthologous gene clusters (OCs) indicated
that strain YYF0007T should be recognized as a novel
genus of the family Spirosomaceae. The cells were Gramstain-
negative, nonmotile, strictly aerobic, and straight long
rods with no flagellum. Optimum growth occurred at 28°C
and pH 7.0 with the presence of NaCl concentration 1.0–3.0%
(w/v). The strain showed oxidase and catalase activities.
The major fatty acids were C16:1ω5c, iso-C15:0 and summed
feature 3 (C16:1 ω7c and/or C16:1 ω6c). The predominant isoprenoid
quinone was MK-7. The complete genome size was
4.64 Mb with a DNA G + C content of 44.4%. Further typing
of CRISPR-Cas systems in the family Spirosomaceae and the
phylum Bacteroidota indicated that it was remarkable for
strain YYF0007T featured by such a set of CRISPR-Cas systems.
This trait highlights the applications of strain YYF-
0007T in studies on the evolutionary dynamics and bacterial
autoimmunity of CRISPR-Cas system as a potential model.
The name Marinilongibacter aquaticus gen. nov., sp. nov. is
proposed, and the type strain is YYF0007T (= MCCC 1K06017T
= GDMCC 1.2428T = JCM 34683T).
Hyperhomocysteine (HHcy) is known as a risk factor for coronary
artery disease (CAD). Despite the knowledge that gut
microbiota related metabolism pathway shares metabolites
with that of Hcy, little has been shown concerning the association
between HHcy and gut microbiota. To explore their
relationship in the context of CAD, 105 patients and 14 healthy
controls were recruited from one single medical center located
in Beijing, China. Their serum and fecal samples were
collected, with multi-omics analyses performed via LC/MS/
MS and 16S rRNA gene V3-V4 region sequencing, respectively.
Participants from the prospective cohort were divided
into CAD, CAD & HHcy and healthy controls (HC) groups
based on the diagnosis and serum Hcy concentration. The results revealed significant different metabolic signatures between
CAD and CAD & HHcy groups. CAD patients with
HHcy suffered a heavier atherosclerotic burden compared to
CAD patients, and the difference was closely associated to
betaine-homocysteine S-methyltransferase (BHMT)-related
metabolites and trimethylamine N-oxide (TMAO)-related
metabolites. Dimethylglycine (DMG) exhibited a strong positive
correlation with serum total Hcy (tHcy), and TMAO
and trimethylysine (TML) were associated with heavier atherosclerotic
burden. Multiple other metabolites were also identified
to be related to distinct cardiovascular risk factors. Additionally,
Clostridium cluster IV and Butyricimonas were enriched
in CAD patients with elevated tHcy. Our study suggested
that CAD patients with elevated tHcy were correlated
with higher atherosclerotic burden, and the impaired Hcy
metabolism and cardiovascular risk were closely associated
with BHMT-related metabolites, TMAO-related metabolites
and impaired gut microbiota homeostasis.
Aroma ester components produced by fermenting yeast cells
via alcohol acetyltransferase (AATase)-catalyzed intracellular
reactions are responsible for the fruity character of fermented
alcoholic beverages, such as beer and wine. Acetate esters
are reportedly produced at relatively high concentrations by
non-Saccharomyces species. Here, we identified 12 ATF orthologues
(SfATFs) encoding putative AATases, in the diploid
genome of Saccharomycopsis fibuligera KJJ81, an isolate from
wheat-based Nuruk in Korea. The identified SfATF proteins
(SfAtfp) display low sequence identities with S. cerevisiae
Atf1p (between 13.3 and 27.0%). All SfAtfp identified, except
SfAtf(A)4p and SfAtf(B)4p, contained the activation domain
(HXXXD) conserved in other Atf proteins. Culture supernatant
analysis using headspace gas chromatography mass spectrometry
confirmed that the recombinant S. cerevisiae strains
expressing SfAtf(A)2p, SfAtf(B)2p, and SfAtf(B)6p produced
high levels of isoamyl and phenethyl acetates. The volatile
aroma profiles generated by the SfAtf proteins were distinctive
from that of S. cerevisiae Atf1p, implying difference in
the substrate preference. Cellular localization analysis using
GFP fusion revealed the localization of SfAtf proteins proximal
to the lipid particles, consistent with the presence of amphipathic
helices at their N- and C-termini. This is the first
report that systematically characterizes the S. fibuligera ATF
genes encoding functional AATases responsible for acetate
ester formation using higher alcohols as substrate, demonstrating
their biotechnological potential for volatile ester production.
Listeria monocytogenes (L. monocytogenes) is a Gram-positive
intracellular foodborne pathogen that causes severe diseases,
such as meningitis and sepsis. The NLR family pyrin
domain-containing 3 (NLRP3) inflammasome has been reported
to participate in host defense against pathogen infection.
However, the exact molecular mechanisms underlying
NLRP3 inflammasome activation remain to be fully elucidated.
In the present study, the roles of mammalian Ste20-
like kinases 1/2 (Mst1/2) and Anaplastic Lymphoma Kinase
(ALK) in the activation of the NLRP3 inflammasome induced
by L. monocytogenes infection were investigated. The
expression levels of Mst1/2, phospho (p)-ALK, p-JNK, Nek7,
and NLRP3 downstream molecules including activated caspase-
1 (p20) and mature interleukin (IL)-1β (p17), were upregulated
in L. monocytogenes-infected macrophages. The
ALK inhibitor significantly decreased the expression of p-JNK,
Nek7, and NLRP3 downstream molecules in macrophages infected
with L. monocytogenes. Furthermore, the Mst1/2 inhibitor
markedly inhibited the L. monocytogenes-induced activation
of ALK, subsequently downregulating the expression
of p-JNK, Nek7, and NLRP3 downstream molecules. Therefore,
our study demonstrated that Mst1/2-ALK mediated
the activation of the NLRP3 inflammasome by promoting
the interaction between Nek7 and NLRP3 via JNK during
L. monocytogenes infection, which subsequently increased the
maturation and release of proinflammatory cytokine to resist
pathogen infection. Moreover, Listeriolysin O played a
key role in the process. In addition, we also found that the L.
monocytogenes-induced apoptosis of J774A.1 cells was reduced
by the Mst1/2 or ALK inhibitor. The present study reported,
for the first time, that the Mst1/2-ALK-JNK-NLRP3 signaling
pathway plays a vital proinflammatory role during L. monocytogenes
infection.
Protein lysine acetylation influences many physiological functions,
such as gene regulation, metabolism, and disease in
eukaryotes. Although little is known about the role of lysine
acetylation in bacteria, several reports have proposed its importance
in various cellular processes. Here, we discussed the
function of the protein lysine acetylation and the post-translational
modifications (PTMs) of histone-like proteins in bacteria
focusing on Salmonella pathogenicity. The protein lysine
residue in Salmonella is acetylated by the Pat-mediated enzymatic
pathway or by the acetyl phosphate-mediated non-enzymatic
pathway. In Salmonella, the acetylation of lysine 102
and lysine 201 on PhoP inhibits its protein activity and DNAbinding,
respectively. Lysine acetylation of the transcriptional
regulator, HilD, also inhibits pathogenic gene expression.
Moreover, it has been reported that the protein acetylation
patterns significantly differ in the drug-resistant and
-sensitive Salmonella strains. In addition, nucleoid-associated
proteins such as histone-like nucleoid structuring protein
(H-NS) are critical for the gene silencing in bacteria, and
PTMs in H-NS also affect the gene expression. In this review,
we suggest that protein lysine acetylation and the post-translational
modifications of H-NS are important factors in understanding
the regulation of gene expression responsible
for pathogenicity in Salmonella.
Brucella, the bacterial agent of common zoonotic brucellosis,
primarily infects specific animal species. The Brucella outer
membrane proteins (Omps) are particularly attractive for developing
vaccine and improving diagnostic tests and are associated
with the virulence of smooth Brucella strains. Omp16
is a homologue to peptidoglycan-associated lipoproteins (Pals),
and an omp16 mutant has not been generated in any Brucella
strain until now. Very little is known about the functions and
pathogenic mechanisms of Omp16 in Brucella. Here, we confirmed
that Omp16 has a conserved Pal domain and is highly
conserved in Brucella. We attempted to delete omp16 in Brucella
suis vaccine strain 2 (B. suis S2) without success, which
shows that Omp16 is vital for Brucella survival. We acquired
a B. suis S2 Omp16 mutant via conditional complementation.
Omp16 deficiency impaired Brucella outer membrane integrity
and activity in vitro. Moreover, inactivation of Omp16
decreased bacterial intracellular survival in macrophage
RAW 264.7 cells. B. suis S2 and its derivatives induced marked
expression of IL-1β, IL-6, and TNF-α mRNA in Raw 264.7
cells. Whereas inactivation of Omp16 in Brucella enhanced
IL-1β and IL-6 expression in Raw 264.7 cells. Altogether, these
findings show that the Brucella Omp16 mutant was obtained
via conditional complementation and confirmed that Omp16
can maintain outer membrane integrity and be involved in
bacterial virulence in Brucella in vitro and in vivo. These results
will be important in uncovering the pathogenic mechanisms
of Brucella.