Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
10 "Salmonella"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Genetically Engineered CLDN18.2 CAR-T Cells Expressing Synthetic PD1/CD28 Fusion Receptors Produced Using a Lentiviral Vector.
Heon Ju Lee, Seo Jin Hwang, Eun Hee Jeong, Mi Hee Chang
J. Microbiol. 2024;62(7):555-568.   Published online May 3, 2024
DOI: https://doi.org/10.1007/s12275-024-00133-0
  • 69 View
  • 0 Download
AbstractAbstract
This study aimed to develop synthetic Claudin18.2 (CLDN18.2) chimeric antigen receptor (CAR)-T (CAR-T) cells as a treatment for advanced gastric cancer using lentiviral vector genetic engineering technology that targets the CLDN18.2 antigen and simultaneously overcomes the immunosuppressive environment caused by programmed cell death protein 1 (PD-1). Synthetic CAR T cells are a promising approach in cancer immunotherapy but face many challenges in solid tumors. One of the major problems is immunosuppression caused by PD-1. CLDN18.2, a gastric-specific membrane protein, is considered a potential therapeutic target for gastric and other cancers. In our study, CLDN18.2 CAR was a second-generation CAR with inducible T-cell costimulatory (CD278), and CLDN18.2-PD1/CD28 CAR was a third-generation CAR, wherein the synthetic PD1/CD28 chimeric-switch receptor (CSR) was added to the second-generation CAR. In vitro, we detected the secretion levels of different cytokines and the killing ability of CAR-T cells. We found that the secretion of cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) secreted by three types of CAR-T cells was increased, and the killing ability against CLDN18.2-positive GC cells was enhanced. In vivo, we established a xenograft GC model and observed the antitumor effects and off-target toxicity of CAR-T cells. These results support that synthetic anti-CLDN18.2 CAR-T cells have antitumor effect and anti-CLDN18.2-PD1/CD28 CAR could provide a promising design strategy to improve the efficacy of CAR-T cells in advanced gastric cancer.
Exploring the Therapeutic Potential of Scorpion‑Derived Css54 Peptide Against Candida albicans
Jonggwan Park , Hyeongsun Kim , Da Dam Kang , Yoonkyung Park
J. Microbiol. 2024;62(2):101-112.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00113-4
  • 22 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Candida albicans (C. albicans) is one of the most common opportunistic fungi worldwide, which is associated with a high mortality rate. Despite treatment, C. albicans remains the leading cause of life-threatening invasive infections. Consequently, antimicrobial peptides (AMPs) are potential alternatives as antifungal agents with excellent antifungal activity. We previously reported that Css54, found in the venom of Centrurodies suffusus suffusus (C. s. suffusus) showed antibacterial activity against zoonotic bacteria. However, the antifungal activity of Css54 has not yet been elucidated. The obj!ective of this study was to identify the antifungal activity of Css54 against C. albicans and analyze its mechanism. Css54 showed high antifungal activity against C. albicans. Css54 also inhibited biofilm formation in fluconazole-resistant fungi. The antifungal mechanism of action of Css54 was investigated using membrane-related assays, including the membrane depolarization assay and analysis of the membrane integrity of C. albicans after treatment with Css54. Css54 induced reactive oxygen species (ROS) production in C. albicans, which affected its antifungal activity. Our results indicate that Css54 causes membrane damage in C. albicans, highlighting its value as a potential therapeutic agent against C. albicans infection.
Lactobacillus acidophilus KBL409 Ameliorates Atopic Dermatitis in a Mouse Model
Woon-ki Kim , You Jin Jang , SungJun Park , Sung-gyu Min , Heeun Kwon , Min Jung Jo , GwangPyo Ko
J. Microbiol. 2024;62(2):91-99.   Published online February 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00104-5
  • 24 View
  • 1 Download
  • 1 Citations
AbstractAbstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with repeated exacerbations of eczema and pruritus. Probiotics can prevent or treat AD appropriately via modulation of immune responses and gut microbiota. In this study, we evaluated effects of Lactobacillus acidophilus (L. acidophilus) KBL409 using a house dust mite (Dermatophagoides farinae)-induced in vivo AD model. Oral administration of L. acidophilus KBL409 significantly reduced dermatitis scores and decreased infiltration of immune cells in skin tissues. L. acidophilus KBL409 reduced in serum immunoglobulin E and mRNA levels of T helper (Th)1 (Interferon-γ), Th2 (Interleukin [IL]-4, IL-5, IL-13, and IL-31), and Th17 (IL-17A) cytokines in skin tissues. The anti-inflammatory cytokine IL-10 was increased and Foxp3 expression was up-regulated in AD-induced mice with L. acidophilus KBL409. Furthermore, L. acidophilus KBL409 significantly modulated gut microbiota and concentrations of short-chain fatty acids and amino acids, which could explain its effects on AD. Our results suggest that L. acidophilus KBL409 is the potential probiotic for AD treatment by modulating of immune responses and gut microbiota of host.
Comparative Transcriptomic Analysis of Flagellar‑Associated Genes in Salmonella Typhimurium and Its rnc Mutant
Seungmok Han , Ji-Won Byun , Minho Lee
J. Microbiol. 2024;62(1):33-48.   Published online January 5, 2024
DOI: https://doi.org/10.1007/s12275-023-00099-5
  • 26 View
  • 0 Download
AbstractAbstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a globally recognized foodborne pathogen that affects both animals and humans. Endoribonucleases mediate RNA processing and degradation in the adaptation of bacteria to environmental changes and have been linked to the pathogenicity of S. Typhimurium. Not much is known about the specific regulatory mechanisms of these enzymes in S. Typhimurium, particularly in the context of environmental adaptation. Thus, this study carried out a comparative transcriptomic analysis of wild-type S. Typhimurium SL1344 and its mutant (Δrnc), which lacks the rnc gene encoding RNase III, thereby elucidating the detailed regulatory characteristics that can be attributed to the rnc gene. Global gene expression analysis revealed that the Δrnc strain exhibited 410 upregulated and 301 downregulated genes (fold-change > 1.5 and p < 0.05), as compared to the wild-type strain. Subsequent bioinformatics analysis indicated that these differentially expressed genes are involved in various physiological functions, in both the wild-type and Δrnc strains. This study provides evidence for the critical role of RNase III as a general positive regulator of flagellar-associated genes and its involvement in the pathogenicity of S. Typhimurium.
Editorial
Editorial] Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
Jin-Won Lee
J. Microbiol. 2023;61(3):273-276.   Published online April 3, 2023
DOI: https://doi.org/10.1007/s12275-023-00036-6
  • 20 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Bacteria employ a diverse array of cellular regulatory mechanisms to successfully adapt and thrive in ever-changing environments, including but not limited to temperature changes, fluctuations in nutrient availability, the presence or absence of electron acceptors such as oxygen, the availability of metal ions crucial for enzyme activity, and the existence of antibiotics. Bacteria can virtually modulate any step of gene expression from transcr!ptional initiation to posttranslational modification of a protein for the control of cellular processes. Furthermore, one gene regulator often controls another in a complex gene regulatory network. Thus, it is not easy to fully understand the intricacies of bacterial regulatory mechanisms in various environments. In this special issue, while acknowledging the challenge of covering all aspects of bacterial regulatory mechanisms across diverse environments, seven review articles are included to provide insight into the recent progress in understanding such mechanisms from different perspectives: positive regulatory mechanisms by secondary messenger (cAMP receptor protein), two-component signal transduction mechanisms (Rcs and Cpx), diverse regulatory mechanisms by a specific environmental factor in specific bacteria (oxygen availability in Mycobacterium and manganese ion availability in Salmonella), diverse regulatory mechanisms by a specific environmental factor (temperature and antibiotics), and regulatory mechanisms by antibiotics in cell wall synthesis. Bacteria, as ubiquitous organisms that can be found in almost every environment, carry out complex cellular processes that allow them to survive and thrive in a variety of different conditions despite their small size and relative simplicity. One of the key factors that allows bacteria to carry out these complex processes is their ability to regulate gene expression through various mechanisms. Gene expression is a fundamental biological process by which the genetic information encoded in a gene is transcribed into an RNA molecule and subsequently translated into a functional gene product, often a protein. Furthermore, the activity levels of proteins may further be altered by posttranslational modification. Regulation of gene expression refers to the control of the amount and timing of gene expression, and thus it can be divided into transcr!ptional, translational, and posttranslational levels.
Journal Articles
Eradication of drug-resistant Acinetobacter baumannii by cell-penetrating peptide fused endolysin
Jeonghyun Lim , Jaeyeon Jang , Heejoon Myung , Miryoung Song
J. Microbiol. 2022;60(8):859-866.   Published online May 25, 2022
DOI: https://doi.org/10.1007/s12275-022-2107-y
  • 23 View
  • 0 Download
  • 9 Citations
AbstractAbstract
Antimicrobial agents targeting peptidoglycan have shown successful results in eliminating bacteria with high selective toxicity. Bacteriophage encoded endolysin as an alternative antibiotics is a peptidoglycan degrading enzyme with a low rate of resistance. Here, the engineered endolysin was developed to defeat multiple drug-resistant (MDR) Acinetobacter baumannii. First, putative endolysin PA90 was predicted by genome analysis of isolated Pseudomonas phage PBPA. The His-tagged PA90 was purified from BL21(DE3) pLysS and tested for the enzymatic activity using Gram-negative pathogens known for having a high antibiotic resistance rate including A. baumannii. Since the measured activity of PA90 was low, probably due to the outer membrane, cell-penetrating peptide (CPP) DS4.3 was introduced at the N-terminus of PA90 to aid access to its substrate. This engineered endolysin, DS-PA90, completely killed A. baumannii at 0.25 μM, at which concentration PA90 could only eliminate less than one log in CFU/ml. Additionally, DS-PA90 has tolerance to NaCl, where the ~50% of activity could be maintained in the presence of 150 mM NaCl, and stable activity was also observed with changes in pH or temperature. Even MDR A. baumannii strains were highly susceptible to DS-PA90 treatment: five out of nine strains were entirely killed and four strains were reduced by 3–4 log in CFU/ml. Consequently, DS-PA90 could protect waxworm from A. baumannii-induced death by ~70% for ATCC 17978 or ~44% for MDR strain 1656-2 infection. Collectively, our data suggest that CPP-fused endolysin can be an effective antibacterial agent against Gramnegative pathogens regardless of antibiotics resistance mechanisms.
Characterization and bioefficacy of green nanosilver particles derived from fungicide-tolerant Tricho-fusant for efficient biocontrol of stem rot (Sclerotium rolfsii Sacc.) in groundnut (Arachis hypogaea L.)
Darshna G. Hirpara , Harsukh P. Gajera , Disha D. Savaliya , Rushita V. Bhadani
J. Microbiol. 2021;59(11):1031-1043.   Published online October 6, 2021
DOI: https://doi.org/10.1007/s12275-021-1344-9
  • 12 View
  • 0 Download
  • 7 Citations
AbstractAbstract
An efficient and eco-friendly bioefficacy of potent Trichofusant (Fu21) and its green nanosilver formulation against stem rot (Sclerotium rolfsii) in groundnut was established. Fu21 demonstrated higher in-vitro growth inhibition of pathogen with better fungicide tolerance than the parental strains. The green nanosilver particles were synthesized from the extracellular metabolites of Fu21 and characterized for shape (spherical, 59.34 nm in scanning electron microscope), purity (3.00 KeV, energy dispersive X-ray analysis), size (54.3 nm in particle size analyzer), and stability (53.7 mv, zeta). The field efficacy study exhibited that the seedling emergence was high in seeds treated with green nanosilver (minimum inhibitory concentration-[MIC] 20 μg Ag/ml), and a low disease severity index of stem rot during the crop growth was followed by the live antagonist (Fu21) in addition to seed treatment with a fungicide mix under pathogen infestation. The seed quality analysis of harvested pods revealed a high oil content with balanced fatty acid composition (3.10 oleic/linoleic acid ratio) in green nanosilver treatment under pathogen infestation. The residual analysis suggested that green nanosilver applied at the MIC level as seed treatment yielded similar effects as the control for silver residue in the harvested groundnut seeds. The green nanosilver at MIC has a high pod-yield under S. rolfsii infestation, demonstrating green chemistry and sustainability of the nanoproduct.
Fungal diversity in deep-sea sediments from Magellan seamounts environment of the western Pacific revealed by high-throughput Illumina sequencing
Shuai Yang , Wei Xu , Yuanhao Gao , Xiaoyao Chen , Zhu-Hua Luo
J. Microbiol. 2020;58(10):841-852.   Published online September 2, 2020
DOI: https://doi.org/10.1007/s12275-020-0198-x
  • 15 View
  • 0 Download
  • 12 Citations
AbstractAbstract
There are lots of seamounts globally whose primary production is disproportionally greater than the surrounding areas. Compared to other deep-sea environments, however, the seamounts environment is relatively less explored for fungal diversity. In the present study, we explored the fungal community structure in deep-sea sediments from four different stations of the Magellan seamounts environment by using high-throughput sequencing of the ITS1 region. A total of 1,897,618 ITS1 sequences were obtained. Among these sequences, fungal ITS1 sequences could be clustered into 1,662 OTUs. The majority of these sequences belonged to Ascomycota. In the genera level, the most abundant genus was Mortierella (4.79%), which was reported as a common fungal genus in soil and marine sediments, followed by Umbelopsis (3.80%), Cladosporium (2.98%), Saccharomycopsis (2.53%), Aspergillus (2.42%), Hortaea (2.36%), Saitozyma (2.20%), Trichoderma (2.12%), Penicillium (2.11%), Russula (1.86%), and Verticillium (1.40%). Most of these recovered genera belong to Ascomycota. The Bray-Curtis analysis showed that there was 37 to 85% dissimilarity of fungal communities between each two sediment samples. The Principal coordinates analysis clearly showed variations in the fungal community among different sediment samples. These results suggested that there was a difference in fungal community structures not only among four different sampling stations but also for different layers at the same station. The depth and geographical distance significantly affect the fungal community, and the effect of depth and geographical distance on the structure of the fungal community in the Magellan seamounts is basically same. Most of the fungi were more or less related to plants, these plant parasitic/symbiotic/endophytic fungi constitute a unique type of seamounts environmental fungal ecology, different from other marine ecosystems.
Azohydromonas aeria sp. nov., isolated from air
Han Xue , Chun-gen Piao , Dan-ran Bian , Min-wei Guo , Yong Li
J. Microbiol. 2020;58(7):543-549.   Published online June 27, 2020
DOI: https://doi.org/10.1007/s12275-020-9423-x
  • 16 View
  • 0 Download
  • 4 Citations
AbstractAbstract
A grey pink colored bacterium, strain t3-1-3T, was isolated from the air at the foot of the Xiangshan Mountain in Beijing, China. The cells are aerobic, Gram-stain-negative, non-sporeforming, motile and coccoid-rod shaped (0.9–1.2 × 1.9–2.1 μm). Strain t3-1-3T was catalase-positive and oxidase-negative and this strain grew at 4–42°C (optimum 28°C), a pH of 4.0–9.0 (optimum pH 7.0) and under 0–2% (w/v) NaCl (optimum 0–1% NaCl). A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain t3-1-3T was closely related to Azohydromonas riparia UCM-11T (97.4% similarity), followed by Azohydromonas australica G1-2T (96.8%) and Azohydromonas ureilytica UCM-80T (96.7%). The genome of strain t3-1-3T contains 6,895 predicted protein-encoding genes, 8 rRNA genes, 62 tRNA genes and one sRNA gene, as well as five potential biosynthetic gene clusters, including clusters of genes coding for non-ribosomal peptide synthetase (NRPS), bacteriocin and arylpolyene and two clusters of genes for terpene. The predominant cellular fatty acids (> 10.0% of the total) in strain t3-1-3T were summed feature 3 (C16:1ω7c and/or C16:1ω6c, 37.8%), summed feature 8 (C18:1ω7c and/or C18:1ω6c, 29.7%) and C16:0 (17.3%). Strain t3-1-3T contained ubiquinone-8 (Q-8) as the predominant respiratory quinone. The polar lipids of strain t3-1-3T comprised phosphatidyl ethanolamine (PE), phosphatidyl glycerol (PG), diphosphatidyl glycerol (DPG), an unidentified glycolipid (GL), an unidentified aminophospholipid (APL), two unidentified phospholipid (PL1-2) and five unidentified lipid (L1-5). The DNA G + C content of the type strain is 70.3%. The broader range of growth temperature, assimilation of malic acid and trisodium citrate, presence of C18:3ω6c and an unidentified glycolipid and absence of C12:0 2-OH and C16:0iso differentiate strain t3-1-3T from related species. Based on the taxonomic data presented in this study, we suggest that strain t3-1-3T represents a novel species within the genus Azohydromonas, for which the name Azohydromonas aeria sp. nov. is proposed. The type strain of Azohydromonas aeria is t3-1-3T (= CFCC 13393T = LMG 30135T).
Pathogenomics of Streptococcus ilei sp. nov., a newly identified pathogen ubiquitous in human microbiome
Dong-Wook Hyun , Jae-Yun Lee , Min-Soo Kim , Na-Ri Shin , Tae Woong Whon , Kyung Hyun Kim , Pil Soo Kim , Euon Jung Tak , Mi-Ja Jung , June Young Lee , Hyun Sik Kim , Woorim Kang , Hojun Sung , Che Ok Jeon , Jin-Woo Bae
J. Microbiol. 2021;59(8):793-806.
DOI: https://doi.org/10.1007/s12275-021-1165-x
  • 13 View
  • 0 Download
  • 6 Citations
AbstractAbstract
Viridans group streptococci are a serious health concern because most of these bacteria cause life-threatening infections, especially in immunocompromised and hospitalized individuals. We focused on two alpha-hemolytic Streptococcus strains (I-G2 and I-P16) newly isolated from an ileostomy effluent of a colorectal cancer patient. We examined their pathogenic potential by investigating their prevalence in human and assessing their pathogenicity in a mouse model. We also predicted their virulence factors and pathogenic features by using comparative genomic analysis and in vitro tests. Using polyphasic and systematic approaches, we identified the isolates as belonging to a novel Streptococcus species and designated it as Streptococcus ilei. Metagenomic survey based on taxonomic assignment of datasets from the Human Microbiome Project revealed that S. ilei is present in most human population and at various body sites but is especially abundant in the oral cavity. Intraperitoneal injection of S. ilei was lethal to otherwise healthy C57BL/6J mice. Pathogenomics and in vitro assays revealed that S. ilei possesses a unique set of virulence factors. In agreement with the in vivo and in vitro data, which indicated that S. ilei strain I-G2 is more pathogenic than strain I-P16, only the former displayed the streptococcal group A antigen. We here newly identified S. ilei sp. nov., and described its prevalence in human, virulence factors, and pathogenicity. This will help to prevent S. ilei strain misidentification in the future, and improve the understanding and management of streptococcal infections.

Journal of Microbiology : Journal of Microbiology
TOP