Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Salmonella Enteritidis"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella Enteritidis detection
In Young Choi , Cheonghoon Lee , Won Keun Song , Sung Jae Jang , Mi-Kyung Park
J. Microbiol. 2019;57(2):170-179.   Published online January 31, 2019
DOI: https://doi.org/10.1007/s12275-019-8610-0
  • 43 View
  • 0 Download
  • 13 Web of Science
  • 12 Crossref
AbstractAbstract
Since Salmonella Enteritidis is one of the major foodborne pathogens, on-site applicable rapid detection methods have been required for its control. The purpose of this study was to isolate and purify S. Enteritidis-specific phage (KFS-SE2 phage) from an eel farm and to investigate its feasibility as a novel, efficient, and reliable bio-receptor for its employment. KFS-SE2 phage was successfully isolated at a high concentration of (2.31 ± 0.43) × 1011 PFU/ml, and consisted of an icosahedral head of 65.44 ± 10.08 nm with a non-contractile tail of 135.21 ± 12.41 nm. The morphological and phylogenetic analysis confirmed that it belongs to the Pis4avirus genus in the family of Siphoviridae. KFS-SE2 genome consisted of 48,608 bp with 45.7% of GC content. Genome analysis represented KFS-SE2 to have distinctive characteristics as a novel phage. Comparative analysis of KFS-SE2 phage with closely related strains confirmed its novelty by the presence of unique proteins. KFS-SE2 phage exhibited excellent specificity to S. Enteritidis and was stable under the temperature range of 4 to 50°C and pH of 3 to 11 (P < 0.05). The latent time was determined to be 20 min. Overall, a new lytic KFS-SE2 phage was successfully isolated from the environment at a high concentration and the excellent feasibility of KFS-SE2 phage was demonstrated as a new bio-receptor for S. Enteritidis detection.

Citations

Citations to this article as recorded by  
  • Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis
    Ivan M. Pchelin, Andrei V. Smolensky, Daniil V. Azarov, Artemiy E. Goncharov
    Viruses.2024; 16(12): 1879.     CrossRef
  • User-friendly, signal-enhanced planar spiral coil-based magnetoelastic biosensor combined with humidity-resistant phages for simultaneous detection of Salmonella Typhimurium and Escherichia coli O157:H7 on fresh produce
    In Young Choi, Jaein Choe, Bryan A. Chin, Mi-Kyung Park
    Sensors and Actuators B: Chemical.2023; 393: 134179.     CrossRef
  • Performance of wild, tailed, humidity-robust phage on a surface-scanning magnetoelastic biosensor for Salmonella Typhimurium detection
    Hwa-Eun Lee, Yu-Bin Jeon, Bryan A. Chin, Sang Hyuk Lee, Hye Jin Lee, Mi-Kyung Park
    Food Chemistry.2023; 409: 135239.     CrossRef
  • Advances in detection methods for viable Salmonella spp.: current applications and challenges
    Linlin Zhuang, Jiansen Gong, Qiuping Shen, Jianbo Yang, Chunlei Song, Qingxin Liu, Bin Zhao, Yu Zhang, Mengling Zhu
    Analytical Sciences.2023; 39(10): 1643.     CrossRef
  • Prevalence of Indigenous Antibiotic-Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra-Broad Specificity
    Jaein Choe, Su-Hyeon Kim, Ji Min Han, Jong-Hoon Kim, Mi-Sun Kwak, Do-Won Jeong, Mi-Kyung Park
    Journal of Microbiology.2023; 61(12): 1063.     CrossRef
  • Breathing‐Driven Self‐Powered Pyroelectric ZnO Integrated Face Mask for Bioprotection
    Moon‐Ju Kim, Zhiquan Song, Chang Kyu Lee, Tae Gyeong Yun, Joo‐Yoon Noh, Mi‐Kyung Park, Dongeun Yong, Min‐Jung Kang, Jae‐Chul Pyun
    Small.2023;[Epub]     CrossRef
  • Phage-targeting bimetallic nanoplasmonic biochip functionalized with bacterial outer membranes as a biorecognition element
    Moon-Ju Kim, Hyung Eun Bae, Soonil Kwon, Mi-Kyung Park, Dongeun Yong, Min-Jung Kang, Jae-Chul Pyun
    Biosensors and Bioelectronics.2023; 238: 115598.     CrossRef
  • Salmonella phage akira, infecting selected Salmonella enterica Enteritidis and Typhimurium strains, represents a new lineage of bacteriophages
    Nikoline S. Olsen, René Lametsch, Natalia Wagner, Lars Hestbjerg Hansen, Witold Kot
    Archives of Virology.2022; 167(10): 2049.     CrossRef
  • Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment
    Rashad R. Al-Hindi, Addisu D. Teklemariam, Mona G. Alharbi, Ibrahim Alotibi, Sheren A. Azhari, Ishtiaq Qadri, Turki Alamri, Steve Harakeh, Bruce M. Applegate, Arun K. Bhunia
    Biosensors.2022; 12(10): 905.     CrossRef
  • Characterization of a New and Efficient Polyvalent Phage Infecting E. coli O157:H7, Salmonella spp., and Shigella sonnei
    Su-Hyeon Kim, Damilare Emmanuel Adeyemi, Mi-Kyung Park
    Microorganisms.2021; 9(10): 2105.     CrossRef
  • Improvement of a new selective enrichment broth for culturing Salmonella in ready‐to‐eat fruits and vegetables
    Jiajia Wan, Zhaoxin Lu, Xiaomei Bie, Fengxia Lv, Haizhen Zhao
    Journal of Food Safety.2020;[Epub]     CrossRef
  • Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor
    In Young Choi, Do Hyeon Park, Brayan A. Chin, Cheonghoon Lee, Jinyoung Lee, Mi-Kyung Park
    Journal of Animal Science and Technology.2020; 62(5): 668.     CrossRef
Evaluation of Antibacterial Activity against Salmonella Enteritidis
Gaëlle Legendre , Fabienne Faÿ , Isabelle Linossier , Karine Vallée-Réhel
J. Microbiol. 2011;49(3):349-354.   Published online June 30, 2011
DOI: https://doi.org/10.1007/s12275-011-0162-x
  • 41 View
  • 0 Download
  • 8 Scopus
AbstractAbstract
Salmonella enterica serovar Enteritidis is a well-known pathogenic bacterium responsible for human gastrointestinal enteritis mainly due to the consumption of eggs and egg-products. The first aim of this work was to study several virulence factors of a strain isolated from egg content: SEovo. First, bacterial growth was studied at several temperatures and cell morphology was observed by scanning electronic microscopy. These experiments showed Salmonella’s ability to grow at low temperatures and to produce exoproducts. Next, Salmonella motility was observed performing swimming, twitching, and swarming tests. Results indicated a positive flagellar activity and the cell ability to differentiate and become hyperflagellated under specific conditions. Moreover, SEovo adherence and biofilm formation was carried out. All of these tests enabled us to conclude that SEovo is a potential pathogen, thus it can be used as a model to perform antibacterial experiments. The second part of the study was dedicated to the evaluation of the antibacterial activity of different molecules using several methods. The antibacterial effect of silver and copper aluminosilicates was tested by two different kinds of methods. On the one hand, the effect of these two antibacterial agents was determined using microbiological methods: viable cell count and agar-well diffusion. And on the other hand, the antibacterial activity was evaluated using CLSM and SYTO Red/SYTOX Green dyeing. CLSM allowed for the evaluation of the biocide on sessile cells, whereas the first methods did not. Results showed that adhered bacteria were more resistant than planktonic counterparts and that CLSM was a good alternative to evaluate antibacterial activity on fixed bacteria without having to carry out a removing step.
Phage Types and Pulsed-Field Gel Electrophoresis Patterns of Salmonella enterica serovar Enteritidis Isolated from Humans and Chickens
Sung Hun Kim , Shukho Kim , Sung Guen Chun , Mi-Sun Park , Jeong Hyun Park , Bok-Kwon Lee
J. Microbiol. 2008;46(2):209-213.   Published online June 11, 2008
DOI: https://doi.org/10.1007/s12275-007-0197-1
  • 41 View
  • 0 Download
  • 14 Scopus
AbstractAbstract
We analyzed 66 Salmonella Enteritidis isolates in 2002. Thirty isolates were obtained from human patients with diarrhea, and 36 were obtained from chickens. A total of ten phage types (PT) were identified in the human and chicken isolates. PT1 and PT21 were the predominant PTs in both the human (20% and 13%) and chicken (17% and 47%) isolates. Twelve pulsotypes were generated by PFGE and divided into two major groups. Most of the PFGE types were categorized into cluster group 1. Eighteen chicken isolates in cluster group 1 showed high-level genetic association (>95%) with 22 other human isolates. Additionally, six chicken isolates from cluster group 2 showed fairly high-level genetic association (>95%) with the other seven human isolates. The highest levels of genetic association in humans and chickens were seen with A5-PT21 (11 isolates), A2-PT1 (7 isolates), and B1-PT4 (6 isolates). The Pulsed-Field Gel Electrophoresis (PFGE) and phage typing provided conclusive evidence that human Salmonella infections are attributable to the consumption of contaminated chicken.

Journal of Microbiology : Journal of Microbiology
TOP