Search
- Page Path
-
HOME
> Search
Journal Article
- Direct current exerts electricidal and bioelectric effects on Porphyromonas gingivalis biofilms partially via promoting oxidative stress and antibiotic transport
-
Peihui Zou , Peng Li , Jia Liu , Pei Cao , Qingxian Luan
-
J. Microbiol. 2022;60(1):70-78. Published online November 26, 2021
-
DOI: https://doi.org/10.1007/s12275-022-1238-5
-
-
21
View
-
0
Download
-
7
Citations
-
Abstract
- Low electric current can inhibit certain microbial biofilms and
enhance the efficacy of antimicrobials against them. This study
investigated the electricidal and bioelectric effects of direct
current (DC) against Porphyromonas gingivalis biofilms as
well as the underlying mechanisms. Here, we firstly showed
that DC significantly suppressed biofilm formation of P. gingivalis
in time- and intensity-dependent manners, and markedly
inhibited preformed P. gingivalis biofilms. Moreover,
DC enhanced the killing efficacy of metronidazole (MTZ) and
amoxicillin with clavulanate potassium (AMC) against the
biofilms. Notably, DC-treated biofilms displayed upregulated
intracellular ROS and expression of ROS related genes (sod,
feoB, and oxyR) as well as porin gene. Interestingly, DC-induced
killing of biofilms was partially reversed by ROS scavenger
N-dimethylthiourea (DMTU), and the synergistic effect
of DC with MTZ/AMC was weakened by small interfering
RNA of porin gene (si-Porin). In conclusion, DC can
exert electricidal and bioelectric effects against P. gingivalis
biofilms partially via promotion of oxidative stress and antibiotic
transport, which offers a promising approach for effective
management of periodontitis.
TOP