Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Si Chen"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Multi-omic profiling reveals the impact of keratinase kerZJ on mouse gut homeostasis
Xueqing Gan, Yijiao Wen, Si Chen, Famin Ke, Siyuan Liu, Zening Wang, Chunhua Zhang, Xuanting Wang, Qin Wang, Xiaowei Gao
J. Microbiol. 2025;63(12):e2509011.   Published online December 31, 2025
DOI: https://doi.org/10.71150/jm.2509011
  • 459 View
  • 4 Download
AbstractAbstract PDF

Keratinase kerZJ is a multifunctional protease with potential as a feed additive and functional ingredient. Here we performed an integrated multi‑omics evaluation of its biosafety and impact on gut homeostasis in mice. Our findings confirm that kerZJ is well-tolerated, with no evidence of systemic toxicity or intestinal epithelial damage. Integrated transcriptomic and proteomic analyses revealed that kerZJ reinforces intestinal barrier integrity by upregulating extracellular matrix components, including collagen IV, and modulates mucosal immunity by enhancing B-cell activation and antimicrobial peptide defenses without inducing inflammation. Furthermore, kerZJ administration led to a significant upregulation of digestive enzymes and a dose-dependent increase in short-chain fatty acids production. Microbiome analysis showed that while high-dose kerZJ altered community composition, it enriched for beneficial taxa like Lactobacillaceae and did not induce dysbiosis. These results demonstrate that kerZJ safely enhances gut barrier function, promotes a favorable immune and metabolic environment, and fosters a resilient gut ecosystem, supporting its development as a safe feed additive and nutraceutical component.

Journal Articles
CXCL12/CXCR4 Axis is Involved in the Recruitment of NK Cells by HMGB1 Contributing to Persistent Airway Inflammation and AHR During the Late Stage of RSV Infection
Sisi Chen , Wei Tang , Guangyuan Yu , Zhengzhen Tang , Enmei Liu
J. Microbiol. 2023;61(4):461-469.   Published online February 13, 2023
DOI: https://doi.org/10.1007/s12275-023-00018-8
  • 428 View
  • 0 Download
  • 10 Web of Science
  • 11 Crossref
AbstractAbstract PDF
We previously showed that both high-mobility group box-1 (HMGB1) and natural killer (NK) cells contribute to respiratory syncytial virus (RSV)-induced persistent airway inflammation and airway hyperresponsiveness (AHR). Meanwhile, Chemokine (C-X-C motif) ligand 12 (CXCL12) and its specific receptor (chemokine receptor 4, CXCR4) play important roles in recruitment of immune cells. CXCL12 has been reported to form a complex with HMGB1 that binds to CXCR4 and increases inflammatory cell migration. The relationship between HMGB1, NK cells and chemokines in RSV-infected model remains unclear. An anti-HMGB1 neutralizing antibody and inhibitor of CXCR4 (AMD3100) was administered to observe changes of NK cells and airway disorders in nude mice and BALB/c mice. Results showed that the mRNA expression and protein levels of HMGB1 were elevated in late stage of RSV infection and persistent airway inflammation and AHR were diminished after administration of anti-HMGB1 antibodies, with an associated significant decrease in CXCR4+ NK cells. In addition, CXCL12 and CXCR4 were reduced after HMGB1 blockade. Treatment with AMD3100 significantly suppressed the recruitment of NK cells and alleviated the airway disorders. Thus, CXCL12/CXCR4 axis is involved in the recruitment of NK cells by HMGB1, contributing to persistent airway inflammation and AHR during the late stage of RSV infection.

Citations

Citations to this article as recorded by  
  • The role of HMGB1 in central nervous system (CNS) diseases: mechanisms and therapeutic perspectives
    Ou Du, Yi-Jin Wu, Meng-Yang Li, Jun-Rong Du
    Cytokine.2026; 198: 157099.     CrossRef
  • Exploring Ribosomal Genes as Potential Biomarkers of the Immune Microenvironment in Respiratory Syncytial Virus Infection
    Lu Lin, Zenghua Liao, Chaoqian Li
    Biochemical Genetics.2025; 63(2): 1839.     CrossRef
  • Damage-associated molecular patterns in viral infection: potential therapeutic targets
    Huizhen Tian, Qiong Liu, Xiaomin Yu, Yanli Cao, Xiaotian Huang
    Critical Reviews in Microbiology.2025; 51(3): 514.     CrossRef
  • Peptides targeting RAB11A–FIP2 complex inhibit HPIV3, RSV, and IAV replication as broad-spectrum antivirals
    Yanliang Jiang, Yongliang Zhao, Jie Deng, Xiaoyan Wu, Jian Li, Dong Guo, Ke Xu, Yali Qin, Mingzhou Chen
    Cell & Bioscience.2025;[Epub]     CrossRef
  • Inhibition of the TLR4/RAGE pathway by clearance of extracellular HMGB1 is a potential therapeutic target for radiation-damaged salivary glands
    Takashi I, Riho Kanai, Makoto Seki, Hideki Agata, Hideaki Kagami, Hiroshi Murata, Izumi Asahina, Simon D. Tran, Yoshinori Sumita
    Regenerative Therapy.2025; 30: 476.     CrossRef
  • Respiratory Syncytial Virus (RSV): A Comprehensive Overview From Basic Biology to Clinical Prevention and Control
    Jie Shi, Xiya Huang, Chunjun Ye, Yishan Lu, Yanyan Liu, Yuquan Wei, Xiawei Wei
    Medicinal Research Reviews.2025;[Epub]     CrossRef
  • CXCL12 and CXCL13 as potential biomarkers for disease severity and recurrence in respiratory syncytial virus bronchiolitis
    Lin Zhang, Yuanyu Lv, Zhiao Du, Jiawei Chen, Peng Mo, Xuena Xu, Huiming Sun, Yongdong Yan, Canhong Zhu, Li Huang, Chuangli Hao, Xiuxia Zhou, Heting Dong, Zhengrong Chen
    Scientific Reports.2025;[Epub]     CrossRef
  • DAMPs in immunosenescence and cancer
    Fangquan Chen, Hu Tang, Xiutao Cai, Junhao Lin, Rui Kang, Daolin Tang, Jiao Liu
    Seminars in Cancer Biology.2024; 106-107: 123.     CrossRef
  • Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy
    Meng-Ru Zhang, Lin-Lin Fang, Yang Guo, Qin Wang, You-Jie Li, Hong-Fang Sun, Shu-Yang Xie, Yan Liang
    International Journal of Nanomedicine.2024; Volume 19: 3387.     CrossRef
  • Immunomodulatory markers and therapies for the management of infant respiratory syncytial virus infection
    Ricardo A. Loaiza, Mónica A. Farías, Catalina A. Andrade, Mario A. Ramírez, Linmar Rodriguez-Guilarte, José T. Muñóz, Pablo A. González, Susan M. Bueno, Alexis M. Kalergis
    Expert Review of Anti-infective Therapy.2024; 22(8): 631.     CrossRef
  • Activin A, a Novel Chemokine, Induces Mouse NK Cell Migration via AKT and Calcium Signaling
    Yunfeng Wang, Zhonghui Liu, Yan Qi, Jiandong Wu, Boyang Liu, Xueling Cui
    Cells.2024; 13(9): 728.     CrossRef
Patterns and drivers of Vibrio isolates phylogenetic diversity in the Beibu Gulf, China
Xing Chen , Hong Du , Si Chen , Xiaoli Li , Huaxian Zhao , Qiangsheng Xu , Jinli Tang , Gonglingxia Jiang , Shuqi Zou , Ke Dong , Jonathan M. Adams , Nan Li , Chengjian Jiang
J. Microbiol. 2020;58(12):998-1009.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0293-z
  • 417 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract PDF
Members of the genus Vibrio are ubiquitous in aquatic environments and can be found either in a culturable or a viable but nonculturable (VBNC) state. Despite widespread concerns as to how to define the occurrence and dynamics of Vibrio populations by culture-independent approaches, further physiological research and relevant biotechnological developments will require the isolation and cultivation of the microbes from various environments. The present work provides data and perspectives on our understanding of culturable Vibrio community structure and diversity in the Beibu Gulf. Finally, we isolated 1,037 strains of Vibrio from 45 samples and identified 18 different species. Vibrio alginolyticus, V. cyclitrophicus, V. tasmaniensis, V. brasiliensis, and V. splendidus were the dominant species that had regional distribution characteristics. The correlation between the quantitative distribution and community structure of culturable Vibrio and environmental factors varied with the Vibrio species and geographical locations. Among them, salinity, nitrogen, and phosphorus were the main factors affecting the diversity of culturable Vibrio. These results help to fill a knowledge gap on Vibrio diversity and provide data for predicting and controlling pathogenic Vibrio outbreaks in the Beibu Gulf.

Citations

Citations to this article as recorded by  
  • Environmental factors that regulate Vibrio spp. abundance and community structure in tropical waters
    Yi You Wong, Choon Weng Lee, Chui Wei Bong, Joon Hai Lim, Ching Ching Ng, Kumaran Narayanan, Edmund Ui Hang Sim, Ai-jun Wang
    Anthropocene Coasts.2024;[Epub]     CrossRef
  • Co-occurrence of chromophytic phytoplankton and the Vibrio community during Phaeocystis globosa blooms in the Beibu Gulf
    Qiangsheng Xu, Pengbin Wang, Jinghua Huangleng, Huiqi Su, Panyan Chen, Xing Chen, Huaxian Zhao, Zhenjun Kang, Jinli Tang, Gonglingxia Jiang, Zhuoting Li, Shuqi Zou, Ke Dong, Yuqing Huang, Nan Li
    Science of The Total Environment.2022; 805: 150303.     CrossRef
  • Virulence mechanisms of vibrios belonging to the Splendidus clade as aquaculture pathogens, from case studies and genome data
    Weiwei Zhang, Chenghua Li
    Reviews in Aquaculture.2021; 13(4): 2004.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP