Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "Southern blotting"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Molecular characterization of the Saccharomycopsis fibuligera ATF genes, encoding alcohol acetyltransferase for volatile acetate ester formation
Hye Yun Moon , Hyeon Jin Kim , Ki Seung Kim , Su Jin Yoo , Dong Wook Lee , Hee Je Shin , Jeong Ah Seo , Hyun Ah Kang
J. Microbiol. 2021;59(6):598-608.   Published online May 29, 2021
DOI: https://doi.org/10.1007/s12275-021-1159-8
  • 50 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
Aroma ester components produced by fermenting yeast cells via alcohol acetyltransferase (AATase)-catalyzed intracellular reactions are responsible for the fruity character of fermented alcoholic beverages, such as beer and wine. Acetate esters are reportedly produced at relatively high concentrations by non-Saccharomyces species. Here, we identified 12 ATF orthologues (SfATFs) encoding putative AATases, in the diploid genome of Saccharomycopsis fibuligera KJJ81, an isolate from wheat-based Nuruk in Korea. The identified SfATF proteins (SfAtfp) display low sequence identities with S. cerevisiae Atf1p (between 13.3 and 27.0%). All SfAtfp identified, except SfAtf(A)4p and SfAtf(B)4p, contained the activation domain (HXXXD) conserved in other Atf proteins. Culture supernatant analysis using headspace gas chromatography mass spectrometry confirmed that the recombinant S. cerevisiae strains expressing SfAtf(A)2p, SfAtf(B)2p, and SfAtf(B)6p produced high levels of isoamyl and phenethyl acetates. The volatile aroma profiles generated by the SfAtf proteins were distinctive from that of S. cerevisiae Atf1p, implying difference in the substrate preference. Cellular localization analysis using GFP fusion revealed the localization of SfAtf proteins proximal to the lipid particles, consistent with the presence of amphipathic helices at their N- and C-termini. This is the first report that systematically characterizes the S. fibuligera ATF genes encoding functional AATases responsible for acetate ester formation using higher alcohols as substrate, demonstrating their biotechnological potential for volatile ester production.

Citations

Citations to this article as recorded by  
  • Genome-Wide Identification and Biochemical Characterization of Alcohol Acyltransferases for Aroma Generation in Wickerhamomyces subpelliculosus Isolates from Fermented Food
    Su Jin Yoo, Hyeon Jin Kim, Hye Yun Moon, Min-Seung Jeon, Yong Uk Cho, Che Ok Jeon, Seong-Il Eyun, Hyun Ah Kang
    Journal of Agricultural and Food Chemistry.2024; 72(50): 28194.     CrossRef
  • Characterization and phylogenetic analysis of the complete mitochondrial genome of Saccharomycopsis fibuligera (lindner) Klocker 1907 (saccharomycetales: saccharomycopsidaceae)
    Yue Deng, Guangjiu Chen, Xuedong Bao, Jie He
    Mitochondrial DNA Part B.2024; 9(6): 743.     CrossRef
  • Optimization of High-Density Fermentation Conditions for Saccharomycopsis fibuligera Y1402 through Response Surface Analysis
    Hongyang Yuan, Qi Sun, Lanshuang Wang, Zhilei Fu, Tianze Zhou, Jinghao Ma, Xiaoyan Liu, Guangsen Fan, Chao Teng
    Foods.2024; 13(10): 1546.     CrossRef
  • Genomic and functional features of yeast species in Korean traditional fermented alcoholic beverage and soybean products
    Da Min Jeong, Hyeon Jin Kim, Min-Seung Jeon, Su Jin Yoo, Hye Yun Moon, Eun-joo Jeon, Che Ok Jeon, Seong-il Eyun, Hyun Ah Kang
    FEMS Yeast Research.2023;[Epub]     CrossRef
  • Beer fermentation performance and sugar uptake of Saccharomycopsis fibuligera–A novel option for low-alcohol beer
    Yvonne Methner, Frederico Magalhães, Luis Raihofer, Martin Zarnkow, Fritz Jacob, Mathias Hutzler
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Comparative analysis of aroma components and quality of Geotrichum candidum after space mutation breeding
    Junjie Chen, Qianying Li, Jie Wang, Weizhe Chen, Qikai Zheng, Qingping Zhong, Xiang Fang, Zhenlin Liao
    Frontiers in Microbiology.2022;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP