Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Streptococcaceae"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Description of Streptococcus dentalis sp. nov., Streptococcus gingivalis sp. nov., and Streptococcus lingualis sp. nov., Isolated from Human Oral Cavities
Beom-Jin Goo, Young-Sik Choi, Do-Hun Gim, Su-Won Jeong, Jee-Won Choi, Hojun Sung, Jae-Yun Lee, Jin-Woo Bae
J. Microbiol. 2024;62(11):973-983.   Published online November 12, 2024
DOI: https://doi.org/10.1007/s12275-024-00178-1
  • 66 View
  • 0 Download
AbstractAbstract
We isolated three novel strains, S1T, S2T, and S5T, from human oral cavities and identified them as distinct novel species. All these strains are facultatively anaerobic, Gram-stain-positive, and non-flagellated bacteria. Their optimal growth conditions for these strains were observed in Columbia broth (CB) at 37 °C, pH 7.0, and in the absence of NaCl. Phylogenetic analyses, employing the 16S rRNA gene and whole-genome sequencing, confirmed that all three strains belong to the genus Streptococcus. The 16S rRNA gene sequences of strains S1T, S2T, and S5T showed the highest similarities to Streptococcus parasanguinis, 98.57%, 99.05%, and 99.05%, respectively, and the orthologous average nucleotide identity (OrthoANI) values between the three strains and S. parasanguinis were 93.82%, 93.67%, and 94.04%, respectively. The pairwise OrthoANI values between the novel strains were 94.37% (S1T-S2T), 95.03% (S2T-S5T), and 94.71% (S1T-S5T). All strains had C20:1 ω9c and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as major cellular fatty acids. Additionally, diphosphatidylglycerol (DPG) and hydroxyphosphatidylethanolamine (OH-PE) were identified as major polar lipids. Menaquinone was undetected in all strains. The results from the phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses collectively indicated that strains S1T, S2T, and S5T represent three distinct novel species within the genus Streptococcus, and we propose the names Streptococcus dentalis sp. nov. for strain S1T (= KCTC 21234T = JCM 36526T), Streptococcus gingivalis sp. nov. for strain S2T (= KCTC 21235T = JCM 36527T), and Streptococcus lingualis sp. nov. for strain S5T (= KCTC 21236T = JCM 36528T).
Chemokine CCL6 Plays Key Role in the Inhibitory Effect of Vitamin A on Norovirus Infection
Heetae Lee , Giljae Lee , You-Hee Cho , Youngcheon Song , GwangPyo Ko
J. Microbiol. 2023;61(5):579-587.   Published online May 26, 2023
DOI: https://doi.org/10.1007/s12275-023-00047-3
  • 48 View
  • 0 Download
AbstractAbstract
Norovirus (NoV) is the most common viral cause of acute gastroenteritis worldwide. Vitamin A has demonstrated the potential to protect against gastrointestinal infections. However, the effects of vitamin A on human norovirus (HuNoV) infections remain poorly understood. This study aimed to investigate how vitamin A administration affects NoV replication. We demonstrated that treatment with retinol or retinoic acid (RA) inhibited NoV replication in vitro based on their effects on HuNoV replicon-bearing cells and murine norovirus-1 (MNV-1) replication in murine cells. MNV replication in vitro showed significant transcriptomic changes, which were partially reversed by retinol treatment. RNAi knockdown of CCL6, a chemokine gene that was downregulated by MNV infection but upregulated by retinol administration, resulted in increased MNV replication in vitro. This suggested a role of CCL6 in the host response to MNV infections. Similar gene expression patterns were observed in the murine intestine after oral administration of RA and/or MNV-1.CW1. CCL6 directly decreased HuNoV replication in HG23 cells, and might indirectly regulate the immune response against NoV infection. Finally, relative replication levels of MNV-1.CW1 and MNV-1.CR6 were significantly increased in CCL6 knockout RAW 264.7 cells. This study is the first to comprehensively profile transcriptomes in response to NoV infection and vitamin A treatment in vitro, and thus may provide new insights into dietary prophylaxis and NoV infections.

Journal of Microbiology : Journal of Microbiology
TOP