Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
64 "TAR"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Functional analysis of ascP in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence
Yongchao Guan , Meng Zhang , Yingda Wang , Zhongzhuo Liu , Zelin Zhao , Hong Wang , Dingjie An , Aidong Qian , Yuanhuan Kang , Wuwen Sun , Xiaofeng Shan
J. Microbiol. 2022;60(12):1153-1161.   Published online November 10, 2022
DOI: https://doi.org/10.1007/s12275-022-2373-8
  • 13 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Aeromonas veronii is a pathogen which can induce diseases in humans, animals and aquatic organisms, but its pathogenic mechanism and virulence factors are still elusive. In this study, we successfully constructed a mutant strain (ΔascP) by homologous recombination. The results showed that the deletion of the ascP gene significantly down-regulated the expression of associated effector proteins in A. veronii compared to its wild type. The adhesive and invasive abilities of ΔascP to EPC cells were 0.82-fold lower in contrast to the wild strain. The toxicity of ΔascP to cells was decreased by about 2.91-fold (1 h) and 1.74-fold (2 h). Furthermore, the LD50 of the mutant strain of crucian carp was reduced by 19.94-fold, and the virulence was considerably attenuated. In contrast to the wild strain, the ΔascP content in the liver and spleen was considerably lower. The titers of serum cytokines (IL-8, TNF-α, and IL-1β) in crucian carp after the infection of the ΔascP strain were considerably lower in contrast to the wild strain. Hence, the ascP gene is essential for the etiopathogenesis of A. veronii TH0426.
Synthesis of pinene in the industrial strain Candida glycerinogenes by modification of its mevalonate pathway
Tengfei Ma , Hong Zong , Xinyao Lu , Bin Zhuge
J. Microbiol. 2022;60(12):1191-1200.   Published online October 24, 2022
DOI: https://doi.org/10.1007/s12275-022-2344-0
  • 19 View
  • 0 Download
  • 7 Citations
AbstractAbstract
Terpenes have many applications and are widely found in nature, but recent progress in synthetic biology has enabled the use of microorganisms as chassis cells for the synthesis of these compounds. Candida glycerinogenes (C. glycerinogenes) is an industrial strain that may be developed as a chassis for the synthesis of terpenes since it has a tolerance to hyperosmolality and high sugar, and has a complete mevalonate (MVA) pathway. However, monoterpenes such as pinene are highly toxic, and the tolerance of C. glycerinogenes to pinene was investigated. We also measured the content of mevalonate and squalene to evaluate the strength of the MVA pathway. To determine terpene synthesis capacity, a pathway for the synthesis of pinene was constructed in C. glycerinogenes. Pinene production was improved by overexpression, gene knockdown and antisense RNA inhibition. Pinene production was mainly enhanced by strengthening the upstream MVA pathway and inhibiting the production of by-products from the downstream pathway. With these strategies, yield could be increased by almost 16 times, to 6.0 mg/L. Overall, we successfully constructed a pinene synthesis pathway in C. glycerinogenes and enhanced pinene production through metabolic modification.
Fus3 and Tpk2 protein kinases regulate the phosphorylation-dependent functions of RNA helicase Dhh1 in yeast mating and Ste12 protein expression
Jaehee Hwang , Daehee Jung , Jinmi Kim
J. Microbiol. 2022;60(8):843-848.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2213-x
  • 17 View
  • 0 Download
AbstractAbstract
Decapping of mRNA is a key regulatory step for mRNA decay and translation. The RNA helicase, Dhh1, is known as a decapping activator and translation repressor in yeast Saccharomyces cerevisiae. Dhh1 also functions as a gene-specific positive regulator in the expression of Ste12, a mating-specific transcription factor. A previous study showed that the Nerminal phosphorylation of Dhh1 regulates its association with the mRNA-binding protein, Puf6, to affect the protein translation of Ste12. Here, we investigated the roles of the phosphorylated residues of Dhh1 in yeast mating process and Ste12 expression. The phospho-deficient mutation, DHH1- T10A, was associated with decreased diploid formation during mating and decreased level of the Ste12 protein in response to α-mating pheromone. A kinase overexpression analysis revealed that Ste12 protein expression was affected by overexpression of Fus3 MAP kinase or Tpk2 kinase. Tpk2 was shown to be responsible for phosphorylation of Dhh1 at Thr10. Our study shows that overexpression of Fus3 or Tpk2 alters the Dhh1-Puf6 protein interaction and thereby affects Ste12 protein expression.
Characterization of antibiotic-resistant, coagulase-negative staphylococci from fresh produce and description of Staphylococcus shinii sp. nov. isolated from chives
Gyu-Sung Cho , Bo Li , Erik Brinks , Charles , M.A.P. Franz
J. Microbiol. 2022;60(9):877-889.   Published online June 22, 2022
DOI: https://doi.org/10.1007/s12275-022-2100-5
  • 23 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Coagulase-negative Staphylococcus (CoNS) species may possess antibiotic resistance genes and have been associated with nosocomial infections. In this study, 91 CoNS with decreased susceptibility to oxacillin were isolated from fresh produce using oxacillin containing agar plates. Their antibiotic resistances were determined phenotypically and all isolates were identified by rep-PCR, 16S rRNA and rpoB gene sequencing. Furthermore, the genomes of representative strains were sequenced in order to confirm species identification by phylogenomics. The majority (64 of 91) of the CoNS strains could be identified as Mammaliicoccus (M.) fleurettii, while 13 were identified as M. sciuri, 8 as M. vitulinus, 2 as Staphylococcus (S.) epidermidis and single strains each as S. warneri, S. xylosus, Staphylococcus spp. and S. casei. Most of the strains were generally susceptible to clinically-relevant antibiotics, but only few (< 7%) strains possessed multiple resistances. Both oxacillin and cefoxitin resistant isolates were considered to be presumptive methicillin-resistant CoNS. From whole genome sequencing data of 6 representative strains, the mecA gene, accessory genes and the SCC loci were compared, which revealed high variability between some of the strains. The major fatty acids of K22-5MT strain included anteiso-C15:0, iso-C15:0, iso-C17:0, anteiso-C17:0, C18:0, and C20:0. Average nucleotide identity and digital DNA-DNA hybridization values indicated that Staphylococcus strain K22-5MT was below the species delineation cutoff values for ANI (less than 91%) and DDH (less than 44.4%), with the most closely related species being the S. pseudoxylosus S04009T type strain. Thus, strain K22- 5MT (=DSM 112532T, =LMG 32324T) represents a novel species, for which the name Staphylococcus shinii sp. nov. is proposed.
Meta-Analysis
Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets
Hyun-Seok Oh , Uigi Min , Hyejin Jang , Namil Kim , Jeongmin Lim , Mauricio Chalita , Jongsik Chun
J. Microbiol. 2022;60(5):533-549.   Published online March 31, 2022
DOI: https://doi.org/10.1007/s12275-022-1526-0
  • 25 View
  • 0 Download
  • 9 Citations
AbstractAbstract
The disruption of the human gut microbiota has been linked to host health conditions, including various diseases. However, no reliable index for measuring and predicting a healthy microbiome is currently available. Here, the sequencing data of 1,663 Koreans were obtained from three independent studies. Furthermore, we pooled 3,490 samples from public databases and analyzed a total of 5,153 fecal samples. First, we analyzed Korean gut microbiome covariates to determine the influence of lifestyle on variation in the gut microbiota. Next, patterns of microbiota variations across geographical locations and disease statuses were confirmed using a global cohort and disease data. Based on comprehensive comparative analysis, we were able to define three enterotypes among Korean cohorts, namely, Prevotella type, Bacteroides type, and outlier type. By a thorough categorization of dysbiosis and the evaluation of microbial characteristics using multiple datasets, we identified a wide spectrum of accuracy levels in classifying health and disease states. Using the observed microbiome patterns, we devised an index named the gut microbiome index (GMI) that could consistently predict health conditions from human gut microbiome data. Compared to ecological metrics, the microbial marker index, and machine learning approaches, GMI distinguished between healthy and non-healthy individuals with a higher accuracy across various datasets. Thus, this study proposes a potential index to measure health status of gut microbiome that is verified from multiethnic data of various diseases, and we expect this model to facilitate further clinical application of gut microbiota data in future.
Journal Articles
Meiotic prophase roles of Pds5 in recombination and chromosome condensation in budding yeast
Jeong Hwan Joo , Hyun Ah Kang , Keun Pil Kim , Soogil Hong
J. Microbiol. 2022;60(2):177-186.   Published online February 1, 2022
DOI: https://doi.org/10.1007/s12275-022-1635-9
  • 18 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Genetic variation in eukaryotes is mediated during meiosis by the exchange of genetic material between homologous chromosomes to produce recombinant chromosomes. Cohesin is essential to promote proper chromosome segregation, chromosome morphogenesis, and recombination in meiotic cells. Cohesin consists of three main subunits–Smc1, Smc3, and the kleisin subunit Mcd1/Scc1 (Rec8 in meiosis)–and cohesin accessory factors. In Saccharomyces cerevisiae, the cohesin regulatory subunit Pds5 plays a role in homolog pairing, meiotic axis formation, and interhomolog recombination. In this study, we examine the prophase functions of Pds5 by performing physical analysis of recombination and three-dimensional high-resolution microscopy analysis to identify its roles in meiosis-specific recombination and chromosome morphogenesis. To investigate whether Pds5 plays a role in mitoticlike recombination, we inhibited Mek1 kinase activity, which
result
ed in switching to sister template bias by Rad51-dependent recombination. Reductions in double-strand breaks and crossover products and defective interhomolog recombination occurred in the absence of Pds5. Furthermore, recombination intermediates, including single-end invasion and double-Holliday junction, were reduced in the absence of Pds5 with Mek1 kinase inactivation compared to Mek1 kinase inactivation cells. Interestingly, the absence of Pds5
result
ed in increasing numbers of chromosomes with hypercompaction of the chromosome axis. Thus, we suggest that Pds5 plays an essential role in recombination by suppressing the pairing of sister chromatids and abnormal compaction of the chromosome axis.
Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition
Jun-Hyeok Yu , Do-Won Park , Jeong-A Lim , Jong-Hyun Park
J. Microbiol. 2021;59(9):840-847.   Published online August 12, 2021
DOI: https://doi.org/10.1007/s12275-021-1242-1
  • 16 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Endolysin, a peptidoglycan hydrolase derived from bacteriophage, has been suggested as an alternative antimicrobial agent. Many endolysins on staphylococcal phages have been identified and applied extensively against Staphylococcus spp. Among them, LysK-like endolysin, a well-studied staphylococcal endolysin, accounts for most of the identified endolysins. However, relatively little interest has been paid to LysKunlike endolysin and a few of them has been characterized. An endolysin LysSAP33 encoded on bacteriophage SAP33 shared low homology with LysK-like endolysin in sequence by 41% and domain composition (CHAP-unknown CBD). A green fluorescence assay using a fusion protein for Lys- SAP33_CBD indicated that the CBD domain (157-251 aa) was bound to the peptidoglycan of S. aureus. The deletion of LysSAP33_CBD at the C-terminal region resulted in a significant decrease in lytic activity and efficacy. Compared to LysK-like endolysin, LysSAP33 retained its lytic activity in a broader range of temperature, pH, and NaCl concentrations. In addition, it showed a higher activity against biofilms than LysK-like endolysin. This study could be a helpful tool to develop our understanding of staphylococcal endolysins not belonging to LysK-like endolysins and a potential biocontrol agent against biofilms.
The quorum sensing regulator OpaR is a repressor of polar flagellum genes in Vibrio parahaemolyticus
Renfei Lu , Junfang Sun , Yue Qiu , Miaomiao Zhang , Xingfan Xue , Xue Li , Wenhui Yang , Dongsheng Zhou , Lingfei Hu , Yiquan Zhang
J. Microbiol. 2021;59(7):651-657.   Published online June 1, 2021
DOI: https://doi.org/10.1007/s12275-021-0629-3
  • 11 View
  • 0 Download
  • 21 Citations
AbstractAbstract
Vibrio parahaemolyticus possesses two types of flagella: a single polar flagellum (Pof) for swimming and the peritrichous lateral flagella (Laf) for swarming. Expression of Laf genes has previously been reported to be regulated by the quorum sensing (QS) regulators AphA and OpaR. In the present study, we showed that OpaR, the QS regulator at high cell density (HCD), acted as a negative regulator of swimming motility and the transcription of Pof genes in V. parahaemolyticus. OpaR bound to the promoter-proximal DNA regions of flgAMN, flgMN, and flgBCDEFGHIJ within the Pof gene loci to repress their transcription, whereas it negatively regulates the transcription of flgKL-flaC in an indirect manner. Thus, this work investigated how QS regulated the swimming motility via direct action of its master regulator OpaR on the transcription of Pof genes in V. parahaemolyticus.
Full-repertoire comparison of the microscopic objects composing the human gut microbiome with sequenced and cultured communities
Edmond Kuete Yimagou , Jean-Pierre Baudoin , Rita Abou Abdallah , Fabrizio Di Pinto , Jacques Yaacoub Bou Khalil , Didier Raoult
J. Microbiol. 2020;58(5):377-386.   Published online April 11, 2020
DOI: https://doi.org/10.1007/s12275-020-9365-3
  • 20 View
  • 0 Download
  • 3 Citations
AbstractAbstract
The study of the human gut microbiome is essential in microbiology and infectious diseases as specific alterations in the gut microbiome might be associated with various pathologies, such as chronic inflammatory disease, intestinal infection and colorectal cancer. To identify such dysregulations, several strategies are being used to create a repertoire of the microorganisms composing the human gut microbiome. In this study, we used the “microscomics” approach, which consists of creating an ultrastructural repertoire of all the cell-like objects composing stool samples from healthy donors using transmission electron microscopy (TEM). We used TEM to screen ultrathin sections of 8 resin-embedded stool samples. After exploring hundreds of micrographs, we managed to elaborate ultrastructural categories based on morphological criteria or features. This approach explained many inconsistencies observed with other techniques, such as metagenomics and culturomics. We highlighted the value of our cultureindependent approach by comparing our microscopic images to those of cultured bacteria and those reported in the literature. This study helped to detect “minimicrobes” Candidate Phyla Radiation (CPR) for the first time in human stool samples. This “microscomics” approach is non-exhaustive but complements already existing approaches and adds important data to the puzzle of the microbiota.
Comparative genomic analysis of selenium utilization traits in different marine environments
Muhammad Farukh
J. Microbiol. 2020;58(2):113-122.   Published online January 29, 2020
DOI: https://doi.org/10.1007/s12275-020-9250-0
  • 12 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Selenium (Se) is an essential trace element for many organisms, which is required in the biosynthesis of proteins with selenocysteine, tRNAs with selenouridine, and certain enzymes with Se as a cofactor. Recent large-scale metagenomics projects provide a unique opportunity for studying the global trends of Se utilization in marine environments. Here, we analyzed samples from different marine microbial communities, revealed by the Tara Oceans project, to characterize the Se utilization traits. We found that the selenophosphate synthetase gene, which defines the overall Se utilization, and Se utilization traits are present in all samples. Regions with samples rich and poor in Se utilization traits were categorized. From the analysis of environmental factors, the mesopelagic zone and high temperature (> 15°C) of water are favorable, while geographical location has little influence on Se utilization. All Se utilization traits showed a relatively independent occurrence. The taxonomic classification of Se traits shows that most of the sequences corresponding to Se utilization traits belong to the phylum Proteobacteria. Overall, our study provides useful insights into the general features of Se utilization in ocean samples and may help to understand the evolutionary dynamics of Se utilization in different marine environments.
Lactobacillus plantarum lipoteichoic acid disrupts mature Enterococcus faecalis biofilm
A Reum Kim , Minji Kang , Yeon-Jee Yoo , Cheol-Heui Yun , Hiran Perinpanayagam , Kee-Yeon Kum , Seung Hyun Han
J. Microbiol. 2020;58(4):314-319.   Published online January 28, 2020
DOI: https://doi.org/10.1007/s12275-020-9518-4
  • 12 View
  • 0 Download
  • 15 Citations
AbstractAbstract
Apical periodontitis is caused by biofilm-mediated root canal infection. Early phase oral bacterial biofilms are inhibited by Lactobacillus plantarum lipoteichoic acid (Lp.LTA). However, mature biofilms that develop over 3 weeks are more resistant to traditional endodontic medicaments. Therefore, this study examined the effectiveness of Lp.LTA on disrupting mature Enterococcus faecalis biofilms, and on enhancing the effects of endodontic medicaments. LTA was purified from L. plantarum through butanol extraction followed by hydrophobic and ion-exchange chromatography. E. faecalis biofilms were formed over 3 weeks on glass bottom dishes and in dentin blocks obtained from human single-rooted premolars. These mature biofilms were treated with or without Lp.LTA for 1 h, followed by additional treatment with either chlorhexidine digluconate (CHX), calcium hydroxide (CH), or triple antibiotics for 24 h. Biofilms on glass were live/dead stained and quantified by ZEN through confocal laser microscopy. Biofilms in dentin were fixed, sputter coated and analyzed by ImageJ with scanning electron microscopy. Preformed E. faecalis mature biofilms on the culture dishes were dose-dependently disrupted by Lp.LTA. Lp.LTA potentiated the effects of CHX or CH on the disruption of mature biofilm. Interestingly, CHX-induced disruption of preformed E. faecalis mature biofilms was synergistically enhanced only when pretreated with Lp.LTA. Furthermore, in the dentin block model, Lp.LTA alone reduced E. faecalis mature biofilm and pre-treatment with Lp.LTA promoted the anti-biofilm activity of CHX. Lp.LTA could be an anti-biofilm or supplementary agent that can be effective for E. faecalis-biofilminduced diseases.
Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria
Seo-jeong Park , Sangyong Lim , Jong-il Choi
J. Microbiol. 2020;58(2):131-141.   Published online December 23, 2019
DOI: https://doi.org/10.1007/s12275-020-9290-5
  • 14 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Response regulator (RR) is known a protein that mediates cell’s response to environmental changes. The effect of RR from extremophiles was still under investigation. In this study, response regulator homologs were mined from NGS data of Antarctic bacteria and overexpressed in Escherichia coli. Sixteen amino acid sequences were annotated corresponding to response regulators related to the two-component regulatory systems; of these, 3 amino acid sequences (DRH632, DRH1601 and DRH577) with high homology were selected. These genes were cloned in pRadGro and expressed in E. coli. The transformant strains were subjected to various abiotic stresses including oxidative, osmotic, thermal stress, and acidic stress. There was found that the robustness of E. coli to abiotic stress was increased in the presence of these response regulator homologs. Especially, recombinant E. coli overexpressing drh632 had the highest survival rate in oxidative, hypothermic, osmotic, and acidic conditions. Recombinant E. coli overexpressing drh1601 showed the highest tolerance level to osmotic stress. These results will be applicable for development of recombinant strains with high tolerance to abiotic stress.
H2 Metabolism revealed by metagenomic analysis of subglacial sediment from East Antarctica
Zhifeng Yang , Yu Zhang , Yongxin Lv , Wenkai Yan , Xiang Xiao , Bo Sun , Hongmei Ma
J. Microbiol. 2019;57(12):1095-1104.   Published online November 22, 2019
DOI: https://doi.org/10.1007/s12275-019-9366-2
  • 11 View
  • 0 Download
  • 9 Citations
AbstractAbstract
Subglacial ecosystems harbor diverse chemoautotrophic microbial communities in areas with limited organic carbon, and lithological H2 produced during glacial erosion has been considered an important energy source in these ecosystems. To verify the H2-utilizing potential there and to identify the related energy-converting metabolic mechanisms of these communities, we performed metagenomic analysis on subglacial sediment samples from East Antarctica with and without H2 supplementation. Genes coding for several [NiFe]- hydrogenases were identified in raw sediment and were enriched after H2 incubation. All genes in the dissimilatory nitrate reduction and denitrification pathways were detected in the subglacial community, and the genes coding for these pathways became enriched after H2 was supplied. Similarly, genes transcribing key enzymes in the Calvin cycle were detected in raw sediment and were also enriched. Moreover, key genes involved in H2 oxidization, nitrate reduction, oxidative phosphorylation, and the Calvin cycle were identified within one metagenome-assembled genome belonging to a Polaromonas sp. As suggested by our results, the microbial community in the subglacial environment we investigated consisted of chemoautotrophic populations supported by H2 oxidation. These results further confirm the importance of H2 in the cryosphere.
Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes
Han Na Oh , Doyoung Park , Hoon Je Seong , Dockyu Kim , Woo Jun Sul
J. Microbiol. 2019;57(10):865-873.   Published online September 30, 2019
DOI: https://doi.org/10.1007/s12275-019-9217-1
  • 9 View
  • 0 Download
  • 19 Citations
AbstractAbstract
Lignocellulose composed of complex carbohydrates and aromatic heteropolymers is one of the principal materials for the production of renewable biofuels. Lignocellulose-degrading genes from cold-adapted bacteria have a potential to increase the productivity of biological treatment of lignocellulose biomass by providing a broad range of treatment temperatures. Antarctic soil metagenomes allow to access novel genes encoding for the cold-active lignocellulose-degrading enzymes, for biotechnological and industrial applications. Here, we investigated the metagenome targeting cold-adapted microbes in Antarctic organic matter-rich soil (KS 2-1) to mine lignolytic and celluloytic enzymes by performing single molecule, real-time metagenomic (SMRT) sequencing. In the assembled Antarctic metagenomic contigs with relative long reads, we found that 162 (1.42%) of total 11,436 genes were annotated as carbohydrate-active enzymes (CAZy). Actinobacteria, the dominant phylum in this soil’s metagenome, possessed most of candidates of lignocellulose catabolic genes like glycoside hydrolase families (GH13, GH26, and GH5) and auxiliary activity families (AA7 and AA3). The predicted lignocellulose degradation pathways in Antarctic soil metagenome showed synergistic role of various CAZyme harboring bacterial genera including Streptomyces, Streptosporangium, and Amycolatopsis. From phylogenetic relationships with cellular and environmental enzymes, several genes having potential for participating in overall lignocellulose degradation were also found. The results indicated the presence of lignocellulose-degrading bacteria in Antarctic tundra soil and the potential benefits of the lignocelluolytic enzymes as candidates for cold-active enzymes which will be used for the future biofuel-production industry.
The NADP+-dependent glutamate dehydrogenase Gdh1 is subjected to glucose starvation-induced reversible aggregation that affects stress resistance in yeast
Woo Hyun Lee , Ju Yeong Oh , Pil Jae Maeng
J. Microbiol. 2019;57(10):884-892.   Published online August 3, 2019
DOI: https://doi.org/10.1007/s12275-019-9065-z
  • 12 View
  • 0 Download
  • 3 Citations
AbstractAbstract
The yeast Saccharomyces cerevisiae has two isoforms of NADP+-dependent glutamate dehydrogenase (Gdh1 and Gdh3) that catalyze the synthesis of glutamate from α-ketoglutarate and NH4 +. In the present study, we confirmed that Gdh3, but not Gdh1, mainly contributes to the oxidative stress resistance of stationary-phase cells and found evidence suggesting that the insignificance of Gdh1 to stress resistance is possibly resulted from conditional and reversible aggregation of Gdh1 into punctuate foci initiated in parallel with postdiauxic growth. Altered localization to the mitochondria or peroxisomes prevented Gdh1, which was originally localized in the cytoplasm, from stationary phase-specific aggregation, suggesting that some cytosolic factors are involved in the process of Gdh1 aggregation. Glucose starvation triggered the transition of the soluble form of Gdh1 into the insoluble aggregate form, which could be redissolved by replenishing glucose, without any requirement for protein synthesis. Mutational analysis showed that the N-terminal proximal region of Gdh1 (NTP1, aa 21-26, TLFEQH) is essential for glucose starvation-induced aggregation. We also found that the substitution of NTP1 with the corresponding region of Gdh3 (NTP3) significantly increased the contribution of the mutant Gdh1 to the stress resistance of stationary-phase cells. Thus, this suggests that NTP1 is responsible for the negligible role of Gdh1 in maintaining the oxidative stress resistance of stationary- phase cells and the stationary phase-specific stresssensitive phenotype of the mutants lacking Gdh3.

Journal of Microbiology : Journal of Microbiology
TOP