Journal Article
- The assessment of host and bacterial proteins in sputum from active pulmonary tuberculosis
-
Hsin-Chih Lai , Yu-Tze Horng , Pen-Fang Yeh , Jann-Yuan Wang , Chin-Chung Shu , Jang-Jih Lu , Jen-Jyh Lee , Po-Chi Soo
-
J. Microbiol. 2016;54(11):761-767. Published online October 29, 2016
-
DOI: https://doi.org/10.1007/s12275-016-6201-x
-
-
13
View
-
0
Download
-
4
Citations
-
Abstract
- Pulmonary tuberculosis (TB) is caused by Mycobacterium
tuberculosis. The protein composition of sputum may reflect
the immune status of the lung. This study aimed to evaluate
the protein profiles in spontaneous sputum samples from
patients with active pulmonary TB. Sputum samples were
collected from patients with pulmonary TB and healthy controls.
Western blotting was used to analyze the amount of interleukin
10 (IL-10), interferon-gamma (IFN-γ), IL-25, IL-
17, perforin-1, urease, albumin, transferrin, lactoferrin, adenosine
deaminase (also known as adenosine aminohydrolase,
or ADA), ADA-2, granzyme B, granulysin, and caspase-
1 in sputum. Results of detection of IL-10, IFN-γ, perforin-
1, urease, ADA2, and caspase-1, showed relatively high
specificity in distinguishing patients with TB from healthy
controls, although sensitivities varied from 13.3% to 66.1%.
By defining a positive result as the detection of any two proteins
in sputum samples, combined use of transferrin and
urease as markers increased sensitivity to 73.2% and specificity
to 71.1%. Furthermore, we observed that the concentration of transferrin was proportional to the number of acidfast
bacilli detected in sputum specimens. Detection of sputum
transferrin and urease was highly associated with pulmonary
TB infection. In addition, a high concentration of
transferrin detected in sputum might correlate with active
TB infection. This data on sputum proteins in patients with
TB may aid in the development of biomarkers to assess the
severity of pulmonary TB.
Research Support, Non-U.S. Gov't
- Staphylococcus aureus Siderophore-Mediated Iron-Acquisition System Plays a Dominant and Essential Role in the Utilization of Transferrin-Bound Iron
-
Ra-Young Park , Hui-Yu Sun , Mi-Hwa Choi , Young-Hoon Bai , Sung-Heui Shin
-
J. Microbiol. 2005;43(2):183-190.
-
DOI: https://doi.org/2163 [pii]
-
-
Abstract
- Staphylococcus aureus is known to be capable of utilizing transferrin-bound iron, via both siderophore- and transferrin-binding protein (named IsdA)-mediated iron-acquisition systems. This study was designed in order to determine which iron-acquisition system plays the essential or dominant role with respect to the acquisition of iron from human transferrin, in the growth of S. aureus. Holotransferrin (HT) and partially iron-saturated transferrin (PT), but not apotransferrin (AT), were found to stimulate the growth of S. aureus. S. aureus consumed most of the transferrin-bound iron during the exponential growth phase. Extracellular proteases were not, however, involved in the liberation of iron from transferrin. Transferrin-binding to the washed whole cells via IsdA was not observed during the culture. The expression of IsdA was observed only in the deferrated media with AT, but not in the media supplemented with PT or HT. In contrast, siderophores were definitely produced in the deferrated media with PT and HT, as well as in the media supplemented with AT. The siderophores proved to have the ability to remove iron directly from transferrin, but the washed whole cells expressing IsdA did not. In the bioassay, the growth of S. aureus on transferrin-bound iron was stimulated by the siderophores alone. These results demonstrate that the siderophore-mediated iron-acquisition system plays a dominant and essential role in the uptake of iron from transferrin, whereas the IsdA-mediated iron-acquisition system may play only an ancillary role in the uptake of iron from transferrin.