Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Type II flagella"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Exploring the Therapeutic Potential of Scorpion‑Derived Css54 Peptide Against Candida albicans
Jonggwan Park , Hyeongsun Kim , Da Dam Kang , Yoonkyung Park
J. Microbiol. 2024;62(2):101-112.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00113-4
  • 469 View
  • 13 Download
  • 7 Web of Science
  • 7 Crossref
AbstractAbstract PDF
Candida albicans (C. albicans) is one of the most common opportunistic fungi worldwide, which is associated with a high mortality rate. Despite treatment, C. albicans remains the leading cause of life-threatening invasive infections. Consequently, antimicrobial peptides (AMPs) are potential alternatives as antifungal agents with excellent antifungal activity. We previously reported that Css54, found in the venom of Centrurodies suffusus suffusus (C. s. suffusus) showed antibacterial activity against zoonotic bacteria. However, the antifungal activity of Css54 has not yet been elucidated. The obj!ective of this study was to identify the antifungal activity of Css54 against C. albicans and analyze its mechanism. Css54 showed high antifungal activity against C. albicans. Css54 also inhibited biofilm formation in fluconazole-resistant fungi. The antifungal mechanism of action of Css54 was investigated using membrane-related assays, including the membrane depolarization assay and analysis of the membrane integrity of C. albicans after treatment with Css54. Css54 induced reactive oxygen species (ROS) production in C. albicans, which affected its antifungal activity. Our results indicate that Css54 causes membrane damage in C. albicans, highlighting its value as a potential therapeutic agent against C. albicans infection.

Citations

Citations to this article as recorded by  
  • Natural product-derived antifungals against Candida albicans: Chemical diversity and mechanisms of action
    Runchu Li, Xiaoxu Yang, Wenjia Dan, Jiangkun Dai
    Bioorganic & Medicinal Chemistry.2026; 132: 118435.     CrossRef
  • Animal-derived peptides from Traditional Chinese medicines: medicinal potential, mechanisms, and prospects
    Jiahui Zhang, Siyi Li, Yueyi Qi, Jieyu Shen, Aijing Leng, Jialin Qu
    Journal of Ethnopharmacology.2025; 349: 119872.     CrossRef
  • Scorpion venom as a natural peptide source for innovative therapeutic solutions: A comprehensive review of its potential in emerging medical frontiers
    Radwa Abdallnasser Amen, Rawan Atef Essmat, Alyaa Farid, Mohamed A. Abdel-Rahman, Ahmed A. El-Sherif, Yonghong Zhang
    Toxicon.2025; 268: 108603.     CrossRef
  • Design and Characterization of Antibacterial Peptide Nanofibrils as Components of Composites for Biomaterial Applications
    Justyna Sawicka, Piotr Bollin, Anna Sylla, Miroslawa Panasiuk, Michalina Wilkowska, Lidia Ciolek, Mateusz Leśniewski, Aleksandra Konopka, Karol Struniawski, Gabriela Calka-Kuc, Adam Liwo, Piotr Hanczyc, Maciej Kozak, Beata Gromadzka, Monika Biernat, Sylwi
    Current Protein & Peptide Science.2025; 26(10): 875.     CrossRef
  • Properties and Pharmacology of Scorpion Toxins and Their Biotechnological Potential in Agriculture and Medicine
    Cháriston André Dal Belo, Stephen Hyslop, Célia Regina Carlini
    Toxins.2025; 17(10): 497.     CrossRef
  • Antimicrobial Potential of Scorpion-Venom-Derived Peptides
    Zhiqiang Xia, Lixia Xie, Bing Li, Xiangyun Lv, Hongzhou Zhang, Zhijian Cao
    Molecules.2024; 29(21): 5080.     CrossRef
  • Synthetic Short Cryptic Antimicrobial Peptides as Templates for the Development of Novel Biotherapeutics Against WHO Priority Pathogen
    Manjul Lata, Vrushti Telang, Pooja Gupta, Garima Pant, Mitra Kalyan, Jesu Arockiaraj, Mukesh Pasupuleti
    International Journal of Peptide Research and Therapeutics.2024;[Epub]     CrossRef
[Protocol] Detecting Salmonella Type II flagella production by transmission electron microscopy and immunocytochemistry
Yoontak Han , Eun-Jin Lee
J. Microbiol. 2020;58(4):245-251.   Published online November 23, 2019
DOI: https://doi.org/10.1007/s12275-020-9297-y
  • 303 View
  • 1 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract PDF
The bacterial flagellum is an appendage structure that provides a means for motility to promote survival in fluctuating environments. For the intracellular pathogen Salmonella enterica serovar Typhimurium to survive within macrophages, flagellar gene expression must be tightly regulated, and thus, is controlled at multiple levels, including DNA recombination, transcription, post-transcription, protein synthesis, and assembly within host cells. To understand the contribution of flagella to Salmonella pathogenesis within the host, it is critical to detect flagella production within macrophages via microscopy. In this paper, we describe two methods for detecting bacterial flagella by microscopy both in vitro and in vivo infection models.

Citations

Citations to this article as recorded by  
  • Design and Performance Evaluation of a Graphene Biosensor for Protein Detection with Two, Three Bit Encoding and Machine Learning Optimization
    Jacob Wekalao, Yahya Ali Abdelrahman Ali, Taoufik Saidani, Shobhit K. Patel, Abdulkarem H. M. Almawgani, Basim Ahmad Alabsi
    Plasmonics.2025;[Epub]     CrossRef
  • A shared mechanism of multidrug resistance in laboratory-evolved uropathogenic Escherichia coli
    Nakjun Choi, Eunna Choi, Yong-Joon Cho, Min Jung Kim, Hae Woong Choi, Eun-Jin Lee
    Virulence.2024;[Epub]     CrossRef
  • QseC regulates chemotaxis, biofilm formation, motility, and virulence in Aeromonas veronii TH0426
    Luo-tao Tao, Lu Wang, Jing Xiong, Liang Chen, Ze-lin Zhao, Dong-xing Zhang, Lei Zhang, Wu-wen Sun, Xiao-feng Shan
    Aquaculture.2024; 588: 740928.     CrossRef
  • Salinicola avicenniae sp. nov., a Novel Gammaproteobacterium Isolated from Mangrove Plant, Avicennia marina, in Beibu Gulf, China
    Wenquan Zhang, Danyun Ou, Yue Ni, Hao Huang, Weiwen Li, Lei Wang, Shunyang Chen, Guangcheng Chen
    Current Microbiology.2024;[Epub]     CrossRef
  • Etiological Survey and Traceability Analysis of a Foodborne Disease Outbreak of Salmonella Senftenberg in Guizhou Province
    Qian Zhou, Yu-jing Zhong, Zhu-zhou Shan, Xue-xue Pan, Jing-yu Huang, Jing-shu Xiang, De-zhu Zhang, Wei-wei Li, Jun Li, Ying Liu, Shi-jun Li, Li Zhou
    Foodborne Pathogens and Disease.2023; 20(8): 351.     CrossRef
  • Sulfamethoxazole degradation by Pseudomonas silesiensis F6a isolated from bioelectrochemical technology-integrated constructed wetlands
    Xiaohui Liu, Jing Chen, Ying Liu, Zhengfen Wan, Xiaochun Guo, Shaoyong Lu, Dongru Qiu
    Ecotoxicology and Environmental Safety.2022; 240: 113698.     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
  • Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
    Jaejin Lee, Eunkyoung Shin, Jaeyeong Park, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(12): 1133.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP