Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
8 "Yarrowia lipolytica"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Development of recombinant Yarrowia lipolytica producing virus-like particles of a fish nervous necrosis virus
Van-Trinh Luu , Hye Yun Moon , Jee Youn Hwang , Bo-Kyu Kang , Hyun Ah Kang
J. Microbiol. 2017;55(8):655-664.   Published online July 28, 2017
DOI: https://doi.org/10.1007/s12275-017-7218-5
  • 53 View
  • 0 Download
  • 19 Crossref
AbstractAbstract
Nervous necrosis virus (NNV) causes viral encephalopathy and retinopathy, a devastating disease of many species of cultured marine fish worldwide. In this study, we used the dimorphic non-pathogenic yeast Yarrowia lipolytica as a host to express the capsid protein of red-spotted grouper nervous necrosis virus (RGNNV-CP) and evaluated its potential as a platform for vaccine production. An initial attempt was made to express the codon-optimized synthetic genes encoding intact and N-terminal truncated forms of RGNNV-CP under the strong constitutive TEF1 promoter using autonomously replicating sequence (ARS)-based vectors. The full-length recombinant capsid proteins expressed in Y. lipolytica were detected not only as monomers and but also as trimers, which is a basic unit for formation of NNV virus-like particles (VLPs). Oral immunization of mice with whole recombinant Y. lipolytica harboring the ARSbased plasmids was shown to efficiently induce the formation of IgG against RGNNV-CP. To increase the number of integrated copies of the RGNNV-CP expression cassette, a set of 26S ribosomal DNA-based multiple integrative vectors was constructed in combination with a series of defective Ylura3 with truncated promoters as selection markers, resulting in integrants harboring up to eight copies of the RGNNVCP cassette. Sucrose gradient centrifugation and transmission electron microscopy of this high-copy integrant were carried out to confirm the expression of RGNNV-CPs as VLPs. This is the first report on efficient expression of viral capsid proteins as VLPs in Y. lipolytica, demonstrating high potential for the Y. lipolytica expression system as a platform for recombinant vaccine production based on VLPs.

Citations

Citations to this article as recorded by  
  • Elucidation and engineering of Sphingolipid biosynthesis pathway in Yarrowia lipolytica for enhanced production of human-type sphingoid bases and glucosylceramides
    Seo Hyeon Shin, Hye Yun Moon, Hae Eun Park, Gi Jeong Nam, Ju Hye Baek, Che Ok Jeon, Hyunwook Jung, Myeong Seok Cha, Sol Choi, Jeong Jun Han, Chen Yuan Hou, Chang Seo Park, Hyun Ah Kang
    Metabolic Engineering.2025; 87: 68.     CrossRef
  • Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery
    Vartika Srivastava, Kripa N. Nand, Aijaz Ahmad, Ravinder Kumar
    Vaccines.2023; 11(2): 479.     CrossRef
  • Humoral immune response in Asian seabass vaccinated with inactivated and recombinant viral nervous necrosis vaccine
    M. Makesh, N. Venkata Satyanarayana, K. Muddukrishnaiah, Sujeet Kumar, G. Thiagarajan, Ashok Kumar Jangam, R. Subburaj, M. Kailasam, K.K. Vijayan
    Aquaculture.2023; 569: 739384.     CrossRef
  • Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts
    Xiaosong Gu, Lei Huang, Jiazhang Lian
    Synthetic and Systems Biotechnology.2023; 8(3): 469.     CrossRef
  • Yeast as carrier for drug delivery and vaccine construction
    Yifu Tan, Liwei Chen, Ke Li, Beibei Lou, Yanfei Liu, Zhenbao Liu
    Journal of Controlled Release.2022; 346: 358.     CrossRef
  • Construction of Attenuated Strains for Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) via Reverse Genetic System
    Yingying Lei, Yu Xiong, Dagang Tao, Tao Wang, Tianlun Chen, Xufei Du, Gang Cao, Jiagang Tu, Jinxia Dai
    Viruses.2022; 14(8): 1737.     CrossRef
  • Long-Term Protection and Serologic Response of European Sea Bass Vaccinated with a Betanodavirus Virus-Like Particle Produced in Pichia pastoris
    Sofie Barsøe, Anna Toffan, Francesco Pascoli, Ansgar Stratmann, Tobia Pretto, Andrea Marsella, Mériem Er-Rafik, Niccolò Vendramin, Niels J. Olesen, Dagoberto Sepúlveda, Niels Lorenzen
    Vaccines.2021; 9(5): 447.     CrossRef
  • Plant-Produced Vaccines: Future Applications in Aquaculture
    Hang Su, Igor A. Yakovlev, André van Eerde, Jianguo Su, Jihong Liu Clarke
    Frontiers in Plant Science.2021;[Epub]     CrossRef
  • Recombinant Baculovirus-Produced Grass Carp Reovirus Virus-Like Particles as Vaccine Candidate That Provides Protective Immunity against GCRV Genotype II Infection in Grass Carp
    Ting Gao, Caixia Gao, Siyu Wu, Yingying Wang, Jiyuan Yin, Yingying Li, Weiwei Zeng, Sven M. Bergmann, Qing Wang
    Vaccines.2021; 9(1): 53.     CrossRef
  • Developing oral nanovaccines for fish: a modern trend to fight infectious diseases
    Carlos Angulo, Marlene Tello‐Olea, Martha Reyes‐Becerril, Elizabeth Monreal‐Escalante, Luis Hernández‐Adame, Miriam Angulo, José M. Mazon‐Suastegui
    Reviews in Aquaculture.2021; 13(3): 1172.     CrossRef
  • Contribution of yeast models to virus research
    R Sahaya Glingston, Jyoti Yadav, Jitika Rajpoot, Neha Joshi, Shirisha Nagotu
    Applied Microbiology and Biotechnology.2021; 105(12): 4855.     CrossRef
  • Yarrowia lipolytica, health benefits for animals
    Francisco A. Guardiola, María Ángeles Esteban, Carlos Angulo
    Applied Microbiology and Biotechnology.2021; 105(20): 7577.     CrossRef
  • Betanodavirus and VER Disease: A 30-year Research Review
    Isabel Bandín, Sandra Souto
    Pathogens.2020; 9(2): 106.     CrossRef
  • Yeast synthetic biology for designed cell factories producing secretory recombinant proteins
    Eun Jung Thak, Su Jin Yoo, Hye Yun Moon, Hyun Ah Kang
    FEMS Yeast Research.2020;[Epub]     CrossRef
  • Yeast-based vaccines: New perspective in vaccine development and application
    Ravinder Kumar, Piyush Kumar
    FEMS Yeast Research.2019;[Epub]     CrossRef
  • Development of conditional cell lysis mutants of Saccharomyces cerevisiae as production hosts by modulating OCH1 and CHS3 expression
    Van-Trinh Luu, Hye Yun Moon, Su Jin Yoo, Jin Ho Choo, Eun Jung Thak, Hyun Ah Kang
    Applied Microbiology and Biotechnology.2019; 103(5): 2277.     CrossRef
  • An effective and rapid method for RNA preparation from non-conventional yeast species
    Dong Wook Lee, Chang Pyo Hong, Hyun Ah Kang
    Analytical Biochemistry.2019; 586: 113408.     CrossRef
  • A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches
    Jie Ma, Timothy J. Bruce, Evan M. Jones, Kenneth D. Cain
    Microorganisms.2019; 7(11): 569.     CrossRef
  • Vaccination with UV-inactivated nodavirus partly protects European sea bass against infection, while inducing few changes in immunity
    Yulema Valero, Djamal Mokrani, Elena Chaves-Pozo, Marta Arizcun, Mustapha Oumouna, José Meseguer, M.Ángeles Esteban, Alberto Cuesta
    Developmental & Comparative Immunology.2018; 86: 171.     CrossRef
Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae
Hye Ji Oh , Yun Moon , Seon Ah Cheon , Yoonsoo Hahn , Hyun Ah Kang
J. Microbiol. 2016;54(10):667-674.   Published online September 30, 2016
DOI: https://doi.org/10.1007/s12275-016-6401-4
  • 45 View
  • 0 Download
  • 3 Crossref
AbstractAbstract
O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated.

Citations

Citations to this article as recorded by  
  • GREB1: An evolutionarily conserved protein with a glycosyltransferase domain links ERα glycosylation and stability to cancer
    Eun Myoung Shin, Vinh Thang Huynh, Sultan Abda Neja, Chia Yi Liu, Anandhkumar Raju, Kelly Tan, Nguan Soon Tan, Jayantha Gunaratne, Xuezhi Bi, Lakshminarayan M. Iyer, L. Aravind, Vinay Tergaonkar
    Science Advances.2021;[Epub]     CrossRef
  • Contribution of yeast models to virus research
    R Sahaya Glingston, Jyoti Yadav, Jitika Rajpoot, Neha Joshi, Shirisha Nagotu
    Applied Microbiology and Biotechnology.2021; 105(12): 4855.     CrossRef
  • A Sweet Embrace: Control of Protein–Protein Interactions by O-Linked β-N-Acetylglucosamine
    Heather J. Tarbet, Clifford A. Toleman, Michael Boyce
    Biochemistry.2018; 57(1): 13.     CrossRef
Research Support, Non-U.S. Gov'ts
Functional Characterization of Extracellular Chitinase Encoded by the YlCTS1 Gene in a Dimorphic Yeast Yarrowia lipolytica
Jeong-Nam Park , Chang Pyo Han , Dong-Jik Lee , Seon Ah Cheon , Hyun Ah Kang
J. Microbiol. 2014;52(4):284-291.   Published online March 29, 2014
DOI: https://doi.org/10.1007/s12275-014-4070-8
  • 51 View
  • 0 Download
  • 4 Crossref
AbstractAbstract
The hemiascomycetes yeast Yarrowia lipolytica is a dimorphic yeast with alternating yeast and mycelia forms. Bioinformatic analysis revealed the presence of three putative chitinase genes, YlCTS1, YlCTS2, and YlCTS3, in the Y. lipolytica genome. Here, we demonstrated that the protein of YlCTS1 (YlCts1p), which contains an N-terminal secretion signal peptide, a long C-terminal Ser/Thr-rich domain, and a chitin-binding domain, is a homologue to Saccharomyces cerevisiae chitinase 1 (ScCts1p). Deletion of YlCTS1 remarkably reduced extracellular endochitinase activity in the culture supernatant of Y. lipolytica and enhanced cell aggregation, suggesting a role of YlCts1p in cell separation as ScCts1p does in S. cerevisiae. However, loss of YlCts1p function did not affect hyphal formation induced by fetal bovine serum addition. The mass of YlCts1p was dramatically decreased by jack bean α-mannosidase digestion but not by PNGase F treatment, indicating that YlCts1p is modified only by Omannosylation without N-glycosylation. Moreover, the O-glycan profile of YlCts1p was identical to that of total cell wall mannoproteins, supporting the notion that YlCts1p can be used as a good model for studying O-glycosylation in this dimorphic yeast.

Citations

Citations to this article as recorded by  
  • Advancing Ultrasensitive, Drift-Correcting Dual Floating Gate Organic Electrochemical Transistors for Yeast Sensing
    Jonathan Harris, Michael Brothers, Victoria Coyle, Steve Kim, Erin Ratcliff
    Chemistry of Materials.2024; 36(1): 324.     CrossRef
  • The N-Acetylglucosamine Kinase from Yarrowia lipolytica Is a Moonlighting Protein
    Carmen-Lisset Flores, Joaquín Ariño, Carlos Gancedo
    International Journal of Molecular Sciences.2021; 22(23): 13109.     CrossRef
  • Recovery and valorization of agri-food wastes and by-products using the non-conventional yeast Yarrowia lipolytica
    Davide Gottardi, Lorenzo Siroli, Lucia Vannini, Francesca Patrignani, Rosalba Lanciotti
    Trends in Food Science & Technology.2021; 115: 74.     CrossRef
  • Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae
    Hye Ji Oh, Hye Yun Moon, Seon Ah Cheon, Yoonsoo Hahn, Hyun Ah Kang
    Journal of Microbiology.2016; 54(10): 667.     CrossRef
Cell-Surface Expression of Aspergillus saitoi-Derived Functional α-1,2-Mannosidase on Yarrowia lipolytica for Glycan Remodeling
Hye Yun Moon , Trinh Luu Van , Seon Ah Cheon , Jinho Choo , Jeong-Yoon Kim , Hyun Ah Kang
J. Microbiol. 2013;51(4):506-514.   Published online August 30, 2013
DOI: https://doi.org/10.1007/s12275-013-3344-x
  • 39 View
  • 0 Download
  • 16 Scopus
AbstractAbstract
Expression of proteins on the surface of yeast has a wide range of applications, such as development of live vaccines, screening of antibody libraries, and use as whole-cell biocatalysts. The hemiascomycetes yeast Yarrowia lipolytica has been raised as a potential host for heterologous expression of recombinant proteins. In this study, we report the expression of Aspergillus saitoi α-1,2-mannosidase, encoded by the msdS gene, on the cell surface of Y. lipolytica. As the first step to achieve the secretory expression of msdS protein, four different signal sequences-derived from the endogenous Y. lipolytica Lip2 and Xpr2 prepro regions and the heterologous A. niger α-amylase and rice α-amylase signal sequences-were analyzed for their secretion efficiency. It was shown that the YlLip2 prepro sequence was most efficient in directing the secretory expression of msdS in fully N-glycosylated forms. The surface display of msdS was subsequently directed by fusing GPI anchoring motifs derived from Y. lipolytica cell wall proteins, YlCwp1p and YlYwp1p, respectively, to the C-terminus of the Lip2 prepro-msdS protein. The expression of actively functional msdS protein on the cell surface was confirmed by western blot, flow cytometry analysis, along with the α-1,2-mannosidase activity assay using intact Y. lipolytica cells as the enzyme source. Furthermore, the glycoengineered Y. lipolytica Δoch1Δmpo1 strains displaying α-1,2-mannosidase were able to convert Man8GlcNAc2 to Man5GlcNAc2 efficiently on their cell-wall mannoproteins, demonstrating its potential used for glycoengineering in vitro or in vivo.
Journal Article
High Efficiency Transformation by Electroporation of Yarrowia lipolytica
Jia-Hung Wang , Wenpin Hung , Shu-Hsien Tsai
J. Microbiol. 2011;49(3):469-472.   Published online June 30, 2011
DOI: https://doi.org/10.1007/s12275-011-0433-6
  • 27 View
  • 0 Download
  • 38 Scopus
AbstractAbstract
Yarrowia lipolytica was usually transformed by heat shock, but linearized integrative vectors always resulted in a low transformation efficiency when electroporation was used. To develop a high efficiency integrative transformation method by electroporation of Y. lipolytica, we report here that pretreatment of Y. lipolytica with 150 mM LiAc for 1 h before electroporation will approximately 30-fold of increase transformation efficiency. A cell concentration of 1010/ml and instrument settings of 1.5 kV will generate the highest transformation efficiencies. We have developed a procedure to transform Y. lipolytica that will be able to yield an efficiency of 2.1×104 transformants/μg for integrative linear DNA. With our modifications, the electroporation procedures became a very efficient and reliable tool for Y. lipolytica transformation.
Identification and Characterization of an Oil-degrading Yeast, Yarrowia lipolytica 180
Kim, Tae Hyun+ , Lee, Jung-Hyun , Oh, Young Sook , Bae, Kyung Sook , Kim, Sang Jin
J. Microbiol. 1999;37(3):128-135.
  • 39 View
  • 0 Download
AbstractAbstract
Among oil-degrading microorganisms isolated from oil-polluted industrial areas, one yeast strain showed high degradation activity of aliphatic hydrocarbons. From the analyses of 18S rRNA sequences, fatty acid, coenzyme Q system, G+C content of DNA, and biochemical characteristics, the strain was identified as Yarrowia lipolytica 180. Y. lipolytica 180 degraded 94% of aliphatic hydrocarbons in minimal salts medium containing 0.2% (v/v) of Arabian light crude oil within 3 days at 25℃. Optimal growth conditions for temperature, pH, NaCl concentration, and crude oil concentration were 30℃, pH 5-7, 1%, and 2% (v/v), respectively. Y. lipolytica 180 reduced surface tension when cultured on hydrocarbon substrates (1%, v/v), and the measured values of the surface tension were in the range of 51 to 57 dynes/cm. Both the cell free culture broth and cell debris of Y. lipolytica 180 were capable of emulsifying 2% (v/v) crude oil by itself. They were also capable of degrading crude oil (2%). The strain showed a cell surface hydrophobicity higher than 90%, which did not require hydrocarbon substrates for its induction. These results suggest that Y. lipolytica has high oil-degrading activity through its high emulsifying activity and cell hydrophobicity, and further indicate that the cell surface is responsible for the metabolism of aliphatic hydrocarbons.
Cloning and characterization of the multiprotein bridging factor 1 (YlMBF1) gene from the dimorphic yeast Yarrowia lipolytica
Janghwan Kim , Seon Ah Cheon , Yunkyoung Song , Jeong-Yoon Kim
J. Microbiol. 2002;40(2):173-177.
  • 29 View
  • 0 Download
AbstractAbstract
In order to identify Yarrowia lipolytica genes induced by serum, cDNA representational difference analysis was performed using a PCR-select cDNA subtraction method. One of the genes cloned from the subtraction was a gene (YlMBF1) homologous to Saccharomyces cerevisiae MBF1 encoding the coactivator multiprotein bridging factor 1. Disruption of YlMBF1 revealed that the gene was not essential for viability, and the Ylmbf1[delta] strain did not show any distinct phenotypic change on solid serum medium. In liquid medium, however, a difference was found in the ability to maintain hyphae induced by serum. This result suggests that the YlMbf1 protein may mediate transcriptional activation of certain genes involved in the hypha formation of Y. lipolytica.
Isolation and Characterization of Bud6p, an Actin Interacting Protein, from Yarrowia lipolytica
Yunkyoung Song , Seon Ah Cheon , So-Yeon Lee , Ji-Sook Hwang , Jeong-Yoon Kim
J. Microbiol. 2003;41(2):121-128.
  • 40 View
  • 0 Download
AbstractAbstract
The identification of genes involved in true hypha formation is important in the study of mechanisms underlying the morphogenetic switch in yeast. We isolated a gene responsible for the morphogenetic switch in Yarrowia lipolytica, which forms true hyphae in response to serum or N-acetylglucosamine. The isolated gene, encoding 847 amino acids, had sequence identities of 27% and 25% with the Bud6 (Aip3) proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe, respectively. Disruption of this gene, designated YlBUD6, in haploid and diploid strains significantly reduced the ability of Y. lipolytica to switch from the yeast form to the hyphal form in hypha-inducing media. It was also found that YlBud6 mutants were rounder than the wild type when grown in the yeast form. These results indicate that the YlBud6 protein is necessary for hyphal growth and cell polarity in both haploid and diploid Y. lipolytica cells.

Journal of Microbiology : Journal of Microbiology
TOP