Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "acidophiles"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Identification of trehalose as a compatible solute in different species of acidophilic bacteria
Pedro A. Galleguillos , Barry M. Grail , Kevin B. Hallberg , Cecilia S. Demergasso , D. Barrie Johnson
J. Microbiol. 2018;56(10):727-733.   Published online September 28, 2018
DOI: https://doi.org/10.1007/s12275-018-8176-2
  • 12 View
  • 0 Download
  • 22 Citations
AbstractAbstract
The major industrial heap bioleaching processes are located in desert regions (mainly Chile and Australia) where fresh water is scarce and the use of resources with low water activity becomes an attractive alternative. However, in spite of the importance of the microbial populations involved in these processes, little is known about their response or adaptation to osmotic stress. In order to investigate the response to osmotic stress in these microorganisms, six species of acidophilic bacteria were grown at elevated osmotic strength in liquid media, and the compatible solutes synthesised were identified using ion chromatography and MALDI-TOF mass spectrometry. Trehalose was identified as one of, or the sole, compatible solute in all species and strains, apart from Acidithiobacillus thiooxidans where glucose and proline levels increased at elevated osmotic potentials. Several other potential compatible solutes were tentatively identified by MALDITOF analysis. The same compatible solutes were produced by these bacteria regardless of the salt used to produce the osmotic stress. The results correlate with data from sequenced genomes which confirm that many chemolithotrophic and heterotrophic acidophiles possess genes for trehalose synthesis. This is the first report to identify and quantify compatible solutes in acidophilic bacteria that have important roles in biomining technologies.
Review
MINIREVIEW] Microbial Leaching of Metals from Solid Industrial Wastes
Debaraj Mishra , Young Ha Rhee
J. Microbiol. 2014;52(1):1-7.   Published online January 4, 2014
DOI: https://doi.org/10.1007/s12275-014-3532-3
  • 16 View
  • 0 Download
  • 86 Citations
AbstractAbstract
Biotechnological applications for metal recovery have played a greater role in recovery of valuable metals from low grade sulfide minerals from the beginning of the middle era till the end of the twentieth century. With depletion of ore/minerals and implementation of stricter environmental rules, microbiological applications for metal recovery have been shifted towards solid industrial wastes. Due to certain restrictions in conventional processes, use of microbes has garnered increased attention. The process is environmentally-friendly, economical and cost-effective. The major microorganisms in recovery of heavy metals are acidophiles that thrive at acidic pH ranging from 2.0–4.0. These microbes aid in dissolving metals by secreting inorganic and organic acids into aqueous media. Some of the well-known acidophilic bacteria such as Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Sulfolobus spp. are wellstudied for bioleaching activity, whereas, fungal species like Penicillium spp. and Aspergillus niger have been thoroughly studied for the same process. This mini-review focuses on the acidophilic microbial diversity and application of those microorganisms toward solid industrial wastes.

Journal of Microbiology : Journal of Microbiology
TOP