Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "actinobacteria"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Impact of Elevational Gradients and Chemical Parameters on Changes in Soil Bacterial Diversity Under Semiarid Mountain Region
Salman Khan , Chun Han , Awais Iqbal , Chao Guan , Changming Zhao
J. Microbiol. 2023;61(10):903-915.   Published online November 23, 2023
DOI: https://doi.org/10.1007/s12275-023-00085-x
  • 21 View
  • 0 Download
AbstractAbstract
Elevation gradients, often regarded as “natural experiments or laboratories”, can be used to study changes in the distribution of microbial diversity related to changes in environmental conditions that typically occur over small geographical scales. We obtained bacterial sequences using MiSeq sequencing and clustered them into operational taxonomic units (OTUs). The total number of reads obtained by the bacterial 16S rRNA sequencing analysis was 1,090,555, with an average of approximately 45,439 reads per sample collected from various elevations. The current study observed inconsistent bacterial diversity patterns in samples from the lowest to highest elevations. 983 OTUs were found common among all the elevations. The most unique OTUs were found in the soil sample from elevation_2, followed by elevation_1. Soil sample collected at elevation_6 had the least unique OTUs. Actinobacteria, Protobacteria, Chloroflexi were found most abundant bacterial phyla in current study. Ammonium nitrogen ( NH4 +-N), and total phosphate (TP) are the main factors influencing bacterial diversity at elevations_ 1. pH was the main factor influencing the bacterial diversity at elevations_2, elevation_3 and elevation_4. Our results provide new visions on forming and maintaining soil microbial diversity along an elevational gradient and have implications for microbial responses to environmental change in semiarid mountain ecosystems.
Review
Prokaryotic DNA methylation and its functional roles
Hoon Je Seong , Sang-Wook Han , Woo Jun Sul
J. Microbiol. 2021;59(3):242-248.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-0674-y
  • 12 View
  • 0 Download
  • 29 Citations
AbstractAbstract
DNA methylation is known as a universal mechanism of epigenetic regulation in all kingdoms of life. Particularly, given that prokaryotes lack key elements such as histones and nucleosomes that can structurally modify DNA, DNA methylation is considered a major epigenetic regulator in these organisms. However, because DNA methylation studies have focused primarily on eukaryotes, the mechanism of prokaryotic DNA methylation has been less studied than in eukaryotes. DNA methylation in prokaryotes plays an important role in regulating not only the host defense system, but also the cell cycle, gene expression, and virulence that can respond directly to the environment. Recent advances in sequencing techniques capable of detecting methylation signals have allowed for the characterization of prokaryotic genome-wide epigenetic regulation. In this review, we describe representative examples of cellular events regulated by DNA methylation in prokaryotes, from early studies to current applications.

Journal of Microbiology : Journal of Microbiology
TOP