Journal Articles
- Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone
-
Qiudi Zhou, Lihui Feng
-
J. Microbiol. 2024;62(5):367-379. Published online June 17, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00141-0
-
-
50
View
-
0
Download
-
1
Web of Science
-
Abstract
-
2-piperidone is a crucial industrial raw material of high-value nylon-5 and nylon-6,5. Currently, a major bottleneck in the biosynthesis of 2-piperidone is the identification of highly efficient 2-piperidone synthases. In this study, we aimed to identify specific strains among 51 human gut bacterial strains capable of producing 2-piperidone and to elucidate its synthetic mechanism. Our findings revealed that four gut bacterial strains, namely Collinsella aerofaciens LFYP39, Collinsella intestinalis LFYP54, Clostridium bolteae LFYP116, and Clostridium hathewayi LFYP18, could produce 2-piperidone from 5-aminovaleric acid (5AVA).
Additionally, we observed that 2-piperidone could be synthesized from proline through cross-feeding between Clostridium difficile LFYP43 and one of the four 2-piperidone producing strains, respectively. To identify the enzyme responsible for catalyzing the conversion of 5AVA to 2-piperidone, we utilized a gain-of-function library and identified avaC (5-aminovaleric acid cyclase) in C.
intestinalis LFYP54. Moreover, homologous genes of avaC were validated in the other three bacterial strains. Notably, avaC were found to be widely distributed among environmental bacteria. Overall, our research delineated the gut bacterial strains and genes involved in 2-piperidone production, holding promise for enhancing the efficiency of industrial biosynthesis of this compound.
- Recombinant Protein Mimicking the Antigenic Structure of the Viral Surface Envelope Protein Reinforces Induction of an Antigen‑Specific and Virus‑Neutralizing Immune Response Against Dengue Virus
-
Ju Kim , Tae Young Lim , Jisang Park , Yong
-
J. Microbiol. 2023;61(1):131-143. Published online February 1, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00021-z
-
-
62
View
-
0
Download
-
1
Web of Science
-
1
Crossref
-
Abstract
-
Dengue virus (DENV), belonging to the family Flaviviridae, is the causative agent of dengue and comprises four serotypes.
A second heterologous DENV infection is a critical risk factor for severe dengue, and no effective vaccine is available to
prevent infection by all four DENV serotypes. Recombinant DENV vaccines are primarily based on the envelope proteins,
prM and E. The E protein and its envelope domain III (EDIII) have been investigated as candidate antigens (Ags) for
recombinant subunit vaccines. However, most EDIII-based Ags are monomers that do not display the cognate antigenic
structure of E protein, which is essential for induction of virus-neutralizing immunity. Here, we developed recombinant
DENV-2 envelope domain (r2ED) protein as an Ag that mimics the quaternary structure of E protein on the DENV surface.
We confirmed that r2ED retained the conformational epitope displayed at the E-dimer interface, which reportedly exhibits
broad virus-neutralizing capacity, without displaying the fusion loop epitope that causes antibody (Ab)-dependent enhancement.
Furthermore, compared with EDIII alone, r2ED elicited stronger Ag-specific and cross-reactive neutralizing Ab and
T cell-mediated immune responses in mice. This Ag-specific immunity was maintained at an elevated level 6 months after
the last immunization, suggesting sustained Ag-specific immune memory. Taken together, these observations suggest that
r2ED could be used to develop an improved subunit vaccine capable of inducing a broadly cross-reactive and long-lasting
immune response against DENV infection.
-
Citations
Citations to this article as recorded by

- Peptides of a Feather: How Computation Is Taking Peptide Therapeutics under Its Wing
Thomas David Daniel Kazmirchuk, Calvin Bradbury-Jost, Taylor Ann Withey, Tadesse Gessese, Taha Azad, Bahram Samanfar, Frank Dehne, Ashkan Golshani
Genes.2023; 14(6): 1194. CrossRef
- Role of melatonin in murine “restraint stress”-induced dysfunction of colonic microbiota
-
Rutao Lin , Zixu Wang , Jing Cao , Ting Gao , Yulan Dong , Yaoxing Chen
-
J. Microbiol. 2021;59(5):500-512. Published online February 25, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0305-7
-
-
50
View
-
0
Download
-
13
Web of Science
-
15
Crossref
-
Abstract
-
Intestinal diseases caused by physiological stress have become
a severe public health threat worldwide. Disturbances in the
gut microbiota-host relationship have been associated with
irritable bowel disease (IBD), while melatonin (MT) has antiinflammatory
and antioxidant effects. The objective of this
study was to investigate the mechanisms by which MT-mediated
protection mitigated stress-induced intestinal microbiota
dysbiosis and inflammation. We successfully established a
murine restraint stress model with and without MT supplementation.
Mice subjected to restraint stress had significantly
elevated corticosterone (CORT) levels, decreased MT levels
in their plasma, elevated colonic ROS levels and increased bacterial
abundance, including Bacteroides and Tyzzerella, in
their colon tract, which led to elevated expression of Toll-like
receptor (TLR) 2/4, p-P65 and p-IκB. In contrast, supplementation
with 20 mg/kg MT reversed the elevation of the plasma
CORT levels, downregulated the colon ROS levels and inhibited
the changes in the intestinal microbiota induced by
restraint stress. These effects, in turn, inhibited the activities
of TLR2 and TLR4, p-P65 and p-IκB, and decreased the inflammatory
reaction induced by restraint stress. Our results
suggested that MT may mitigate “restraint stress”-induced
colonic microbiota dysbiosis and intestinal inflammation by
inhibiting the activation of the NF-κB pathway.
-
Citations
Citations to this article as recorded by

- Microbial melatonin metabolism in the human intestine as a therapeutic target for dysbiosis and rhythm disorders
Petra Zimmermann, Salome Kurth, Benoit Pugin, Nicholas A. Bokulich
npj Biofilms and Microbiomes.2024;[Epub] CrossRef - Toll-like receptor 4 plays a vital role in irritable bowel syndrome: a scoping review
Xuemeng Wan, Liyuan Wang, Zhiling Wang, Chaomin Wan
Frontiers in Immunology.2024;[Epub] CrossRef - Christensenella minuta mitigates behavioral and cardiometabolic hallmarks of social defeat stress
A. Agusti, GV. Molina-Mendoza, M. Tamayo, V. Rossini, MC. Cenit, C. Frances-Cuesta, V. Tolosa-Enguis, EM. Gómez Del Pulgar, A. Flor-Duro, Y. Sanz
Biomedicine & Pharmacotherapy.2024; 180: 117377. CrossRef - The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota–gut–brain axis perspective
Sarah‐Jane Leigh, Friederike Uhlig, Lars Wilmes, Paula Sanchez‐Diaz, Cassandra E. Gheorghe, Michael S. Goodson, Nancy Kelley‐Loughnane, Niall P. Hyland, John F. Cryan, Gerard Clarke
The Journal of Physiology.2023; 601(20): 4491. CrossRef - Melatonin as a Mediator of the Gut Microbiota–Host Interaction: Implications for Health and Disease
María-Ángeles Bonmatí-Carrión, Maria-Angeles Rol
Antioxidants.2023; 13(1): 34. CrossRef - INVESTIGATION OF THE ROLE OF STRESS IN MALE INFERTILITY AND THE EFFECT OF CURRENT MELATONIN HORMONE TREATMENTS
İshak GÖKÇEK, Leyla AYDIN
Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni.2023; 14(1): 36. CrossRef - The double burden of malnutrition and environmental enteric dysfunction as potential factors affecting gut-derived melatonin in children under adverse environments
Alane N. Bezerra, Caroline L. Peixoto, Synara C. Lopes, Veralice M. S. Bruin, Pedro Felipe C. Bruin, Reinaldo B. Oriá
Frontiers in Nutrition.2023;[Epub] CrossRef - Melatonin: Both a Messenger of Darkness and a Participant in the Cellular Actions of Non-Visible Solar Radiation of Near Infrared Light
Dun-Xian Tan, Russel J. Reiter, Scott Zimmerman, Ruediger Hardeland
Biology.2023; 12(1): 89. CrossRef - Glucocorticoids coordinate the bladder peripheral clock and diurnal micturition pattern in mice
Ichiro Chihara, Hiromitsu Negoro, Jin Kono, Yoshiyuki Nagumo, Haruki Tsuchiya, Kosuke Kojo, Masanobu Shiga, Ken Tanaka, Shuya Kandori, Bryan J. Mathis, Hiroyuki Nishiyama
Communications Biology.2023;[Epub] CrossRef - The Microbiota-Dependent Worsening Effects of Melatonin on Gut Inflammation
Jefferson Luiz da Silva, Lia Vezenfard Barbosa, Camila Figueiredo Pinzan, Viviani Nardini, Irislene Simões Brigo, Cássia Aparecida Sebastião, Jefferson Elias-Oliveira, Vânia Brazão, José Clóvis do Prado Júnior, Daniela Carlos, Cristina Ribeiro de Barros C
Microorganisms.2023; 11(2): 460. CrossRef - The Effects of Stress and Diet on the “Brain–Gut” and “Gut–Brain” Pathways in Animal Models of Stress and Depression
Mauritz F. Herselman, Sheree Bailey, Larisa Bobrovskaya
International Journal of Molecular Sciences.2022; 23(4): 2013. CrossRef - Intestinal microbiota and melatonin in the treatment of secondary injury and complications after spinal cord injury
Yiwen Zhang, Rui Lang, Shunyu Guo, Xiaoqin Luo, Huiting Li, Cencen Liu, Wei Dong, Changshun Bao, Yang Yu
Frontiers in Neuroscience.2022;[Epub] CrossRef - Protective Effects and Mechanisms of Melatonin on Stress Myocardial Injury in Rats
Jia-yao Chen, Ting Li, Jiao-ling Wang, Zhan-le Wang, Yun Zhang, Lin-quan Zang
Journal of Cardiovascular Pharmacology.2022; 80(3): 417. CrossRef - Rescue of social deficits by early-life melatonin supplementation through modulation of gut microbiota in a murine model of autism
Xia Liu, Yi Cui, Yuhan Zhang, Guo Xiang, Meng Yu, Xianshu Wang, Bin Qiu, Xin-gang Li, Wei Liu, Di Zhang
Biomedicine & Pharmacotherapy.2022; 156: 113949. CrossRef - Roles of PRR-Mediated Signaling Pathways in the Regulation of Oxidative Stress and Inflammatory Diseases
Pengwei Li, Mingxian Chang
International Journal of Molecular Sciences.2021; 22(14): 7688. CrossRef
Review
- [MINIREVIEW]Regulation of gene expression by protein lysine acetylation in Salmonella
-
Hyojeong Koo , Shinae Park , Min-Kyu Kwak , Jung-Shin Lee
-
J. Microbiol. 2020;58(12):979-987. Published online November 17, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0483-8
-
-
47
View
-
0
Download
-
14
Web of Science
-
13
Crossref
-
Abstract
-
Protein lysine acetylation influences many physiological functions,
such as gene regulation, metabolism, and disease in
eukaryotes. Although little is known about the role of lysine
acetylation in bacteria, several reports have proposed its importance
in various cellular processes. Here, we discussed the
function of the protein lysine acetylation and the post-translational
modifications (PTMs) of histone-like proteins in bacteria
focusing on Salmonella pathogenicity. The protein lysine
residue in Salmonella is acetylated by the Pat-mediated enzymatic
pathway or by the acetyl phosphate-mediated non-enzymatic
pathway. In Salmonella, the acetylation of lysine 102
and lysine 201 on PhoP inhibits its protein activity and DNAbinding,
respectively. Lysine acetylation of the transcriptional
regulator, HilD, also inhibits pathogenic gene expression.
Moreover, it has been reported that the protein acetylation
patterns significantly differ in the drug-resistant and
-sensitive Salmonella strains. In addition, nucleoid-associated
proteins such as histone-like nucleoid structuring protein
(H-NS) are critical for the gene silencing in bacteria, and
PTMs in H-NS also affect the gene expression. In this review,
we suggest that protein lysine acetylation and the post-translational
modifications of H-NS are important factors in understanding
the regulation of gene expression responsible
for pathogenicity in Salmonella.
-
Citations
Citations to this article as recorded by

- Bacterial protein acetylation: mechanisms, functions, and methods for study
Jocelin Rizo, Sergio Encarnación-Guevara
Frontiers in Cellular and Infection Microbiology.2024;[Epub] CrossRef - Acetyl-proteome profiling revealed the role of lysine acetylation in erythromycin resistance of Staphylococcus aureus
Miao Feng, Xiaoyu Yi, Yanling Feng, Feng He, Zonghui Xiao, Hailan Yao
Heliyon.2024; 10(15): e35326. CrossRef - Short-chain fatty acids in breast milk and their relationship with the infant gut microbiota
Menglu Xi, Yalu Yan, Sufang Duan, Ting Li, Ignatius Man-Yau Szeto, Ai Zhao
Frontiers in Microbiology.2024;[Epub] CrossRef - Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of Bacillus altitudinis to Salt Stress
Xujian Li, Shanshan Dai, Shanshan Sun, Dongying Zhao, Hui Li, Junyi Zhang, Jie Ma, Binghai Du, Yanqin Ding
Journal of Proteome Research.2024;[Epub] CrossRef - Acetylomics reveals an extensive acetylation diversity within Pseudomonas aeruginosa
Nand Broeckaert, Hannelore Longin, Hanne Hendrix, Jeroen De Smet, Mirita Franz-Wachtel, Boris Maček, Vera van Noort, Rob Lavigne
microLife.2024;[Epub] CrossRef - Lysine acetylation regulates the AT-rich DNA possession ability of H-NS
Yabo Liu, Mengqing Zhou, Yifan Bu, Liang Qin, Yuanxing Zhang, Shuai Shao, Qiyao Wang
Nucleic Acids Research.2024; 52(4): 1645. CrossRef -
Acetylation of K188 and K192 inhibits the DNA-binding ability of NarL to regulate
Salmonella
virulence
Liu-Qing Zhang, Yi-Lin Shen, Bang-Ce Ye, Ying Zhou, Christopher A. Elkins
Applied and Environmental Microbiology.2023;[Epub] CrossRef - Acetylome and Succinylome Profiling of Edwardsiella tarda Reveals Key Roles of Both Lysine Acylations in Bacterial Antibiotic Resistance
Yuying Fu, Lishan Zhang, Huanhuan Song, Junyan Liao, Li Lin, Wenjia Jiang, Xiaoyun Wu, Guibin Wang
Antibiotics.2022; 11(7): 841. CrossRef - Pat- and Pta-mediated protein acetylation is required for horizontally-acquired virulence gene expression in Salmonella Typhimurium
Hyojeong Koo, Eunna Choi, Shinae Park, Eun-Jin Lee, Jung-Shin Lee
Journal of Microbiology.2022; 60(8): 823. CrossRef -
Acetylation of CspC Controls the Las Quorum-Sensing System through Translational Regulation of
rsaL
in Pseudomonas aeruginosa
Shouyi Li, Xuetao Gong, Liwen Yin, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Un-Hwan Ha, Weihui Wu, Pierre Cornelis, Gerald B. Pier
mBio.2022;[Epub] CrossRef - Trans-acting regulators of ribonuclease activity
Jaejin Lee, Minho Lee, Kangseok Lee
Journal of Microbiology.2021; 59(4): 341. CrossRef - Acetylation of the CspA family protein CspC controls the type III secretion system through translational regulation ofexsAinPseudomonas aeruginosa
Shouyi Li, Yuding Weng, Xiaoxiao Li, Zhuo Yue, Zhouyi Chai, Xinxin Zhang, Xuetao Gong, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Weihui Wu
Nucleic Acids Research.2021; 49(12): 6756. CrossRef - Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella—A Review
Michał Wójcicki, Olga Świder, Kamila J. Daniluk, Paulina Średnicka, Monika Akimowicz, Marek Ł. Roszko, Barbara Sokołowska, Edyta Juszczuk-Kubiak
Pathogens.2021; 10(7): 801. CrossRef
Journal Articles
- Phosphorylation of tegument protein pp28 contributes to trafficking to the assembly compartment in human cytomegalovirus infection
-
Jun-Young Seo , Jin Ah Heo , William J. Britt
-
J. Microbiol. 2020;58(7):624-631. Published online June 27, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0263-5
-
-
44
View
-
0
Download
-
5
Web of Science
-
5
Crossref
-
Abstract
-
Human cytomegalovirus (HCMV) UL99 encodes a late tegument
protein pp28 that is essential for envelopment and
production of infectious virus. This protein is localized to
the endoplasmic reticulum-Golgi intermediate compartment
(ERGIC) in transfected cells but it localizes to the cytoplasmic
assembly compartment (AC) in HCMV-infected cells. Trafficking
of pp28 to the AC is required for the assembly of infectious
virus. The N-terminal domain (aa 1-61) of pp28 is
sufficient for trafficking and function of the wild type protein
during viral infection. However, residues required for
authentic pp28 trafficking with the exception of the acidic
cluster in the N-terminal domain of pp28 remain undefined.
Monitoring protein migration on SDS-PAGE, we found that
pp28 is phosphorylated in the virus-infected cells and dephosphorylated
in the viral particles. By generating substitution
mutants of pp28, we showed that three serine residues
(aa 41–43) and a tyrosine residue (aa 34) account for its phosphorylation.
The mutant forms of pp28 were localized to the
plasma membrane as well as the ERGIC in transfected cells.
Likewise, these mutant proteins were localized to the plasma
membrane as well as the AC in virus-infected cells. These results
suggested that phosphorylation of pp28 contributes to
its intracellular trafficking and efficient viral assembly and
incorporation.
-
Citations
Citations to this article as recorded by

- Exploring the genetic associations and causal relationships between antibody responses, immune cells, and various types of breast cancer
Yang Yang, Jiayi Chen, Fuhong Gong, Jingge Miao, Mengping Lin, Ruimin Liu, Chenxi Wang, Fei Ge, Wenlin Chen
Scientific Reports.2024;[Epub] CrossRef - Human cytomegalovirus induces significant structural and functional changes in terminally differentiated human cortical neurons
Jacob W. Adelman, Suzette Rosas-Rogers, Megan L. Schumacher, Rebekah L. Mokry, Scott S. Terhune, Allison D. Ebert, Thomas Shenk
mBio.2023;[Epub] CrossRef - Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review
Janine Zeng, Di Cao, Shaomin Yang, Dabbu Kumar Jaijyan, Xiaolian Liu, Songbin Wu, Ruth Cruz-Cosme, Qiyi Tang, Hua Zhu
Viruses.2023; 15(8): 1703. CrossRef - Features and Functions of the Conserved Herpesvirus Tegument Protein UL11 and Its Binding Partners
Linjiang Yang, Mingshu Wang, Anchun Cheng, Qiao Yang, Ying Wu, Juan Huang, Bin Tian, Renyong Jia, Mafeng Liu, Dekang Zhu, Shun Chen, Xinxin Zhao, Shaqiu Zhang, Xumin Ou, Sai Mao, Qun Gao, Di Sun
Frontiers in Microbiology.2022;[Epub] CrossRef - The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction
Declan L. Turner, Rommel A. Mathias
Frontiers in Cell and Developmental Biology.2022;[Epub] CrossRef
- Light affects picocyanobacterial grazing and growth response of the mixotrophic flagellate Poterioochromonas malhamensis
-
Thomas Weisse , Michael Moser
-
J. Microbiol. 2020;58(4):268-278. Published online January 28, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9567-8
-
-
47
View
-
0
Download
-
4
Web of Science
-
4
Crossref
-
Abstract
-
We measured the grazing and growth response of the mixotrophic
chrysomonad flagellate Poterioochromonas malhamensis
on four closely related picocyanobacterial strains isolated
from subalpine lakes in central Europe. The picocyanobacteria
represented different pigment types (phycoerythrin-
rich, PE, and phycocyanin-rich, PC) and phylogenetic
clusters. The grazing experiments were conducted with laboratory
cultures acclimated to 10 μmol photon/m2/sec (low
light, LL) and 100 μmol photon/m2/sec (moderate light, ML),
either in the dark or at four different irradiances ranging from
low (6 μmol photon/m2/sec) to high (1,500 μmol photon/m2/
sec) light intensity. Poterioochromonas malhamensis preferred
the larger, green PC-rich picocyanobacteria to the smaller,
red PE-rich picocyanobacterial, and heterotrophic bacteria.
The feeding and growth rates of P. malhamensis were sensitive
to the actual light conditions during the experiments;
the flagellate performed relatively better in the dark and at
LL conditions than at high light intensity. In summary, our
results
found strain-specific ingestion and growth rates of
the flagellate; an effect of the preculturing conditions, and,
unexpectedly, a direct adverse effect of high light levels. We
conclude that this flagellate may avoid exposure to high surface
light intensities commonly encountered in temperate
lakes during the summer.
-
Citations
Citations to this article as recorded by

- A systematic review of the predatory contaminant Poterioochromonas in microalgal culture
Mingyang Ma, Chaojun Wei, Wenjie Huang, Yue He, Yingchun Gong, Qiang Hu
Journal of Applied Phycology.2023; 35(3): 1103. CrossRef - Transcriptional profile reveals the physiological responses to prey availability in the mixotrophic chrysophyte Poterioochromonas malhamensis
Mingyang Ma, Wentao Yang, Hong Chen, Wanwan Ke, Yingchun Gong, Qiang Hu
Frontiers in Microbiology.2023;[Epub] CrossRef - Microbial consortia in an ice‐covered high‐altitude lake impacted by additions of dissolved organic carbon and nutrients
Flavia Dory, Laurent Cavalli, Evelyne Franquet, Magalie Claeys‐Bruno, Benjamin Misson, Thierry Tatoni, Céline Bertrand
Freshwater Biology.2021; 66(8): 1648. CrossRef - Picoplankton feeding by the ciliate Vorticella similis in comparison to other peritrichs emphasizes their significance in the water purification process
Thomas Weisse, Jitka Jezberova, Michael Moser
Ecological Indicators.2021; 121: 106992. CrossRef
- Overexpression and characterization of a novel cold-adapted and salt-tolerant GH1 β-glucosidase from the marine bacterium Alteromonas sp. L82
-
Jingjing Sun , Wei Wang , Congyu Yao , Fangqun Dai , Xiangjie Zhu , Junzhong Liu , Jianhua Hao
-
J. Microbiol. 2018;56(9):656-664. Published online August 23, 2018
-
DOI: https://doi.org/10.1007/s12275-018-8018-2
-
-
43
View
-
0
Download
-
35
Crossref
-
Abstract
-
A novel gene (bgl) encoding a cold-adapted β-glucosidase
was cloned from the marine bacterium Alteromonas sp.
L82. Based on sequence analysis and its putative catalytic
conserved region, Bgl belonged to the glycoside hydrolase
family 1. Bgl was overexpressed in E. coli and purified by
Ni2+ affinity chromatography. The purified recombinant β-
glucosidase showed maximum activity at temperatures between
25°C to 45°C and over the pH range 6 to 8. The enzyme
lost activity quickly after incubation at 40°C. Therefore,
recombinant β-glucosidase appears to be a cold-adapted
enzyme. The addition of reducing agent doubled its activity
and 2 M NaCl did not influence its activity. Recombinant
β-glucosidase was also tolerant of 700 mM glucose and some
organic solvents. Bgl had a Km of 0.55 mM, a Vmax of 83.6
U/mg, a kcat of 74.3 s-1 and kcat/Km of 135.1 at 40°C, pH 7 with
4-nitrophenyl-β-D-glucopyranoside as a substrate. These
properties indicate Bgl may be an interesting candidate for
biotechnological and industrial applications.
-
Citations
Citations to this article as recorded by

-
Streptomyces beigongshangae sp. nov., isolated from baijiu fermented grains, could transform ginsenosides of Panax notoginseng
Bo Liu, Haoyue Gu, Rui Shi, Xiahong He, Zhanbin Sun, Qing Ren, Hanxu Pan
International Journal of Systematic and Evolutionary Microbiology
.2024;[Epub] CrossRef - A novel GH1 β-glucosidase from an Arctic bacterium: Characterization and secretory expression in Bacillus subtilis
Jingjing Sun, Wei Wang, Jianhua Hao
Process Biochemistry.2024; 140: 108. CrossRef - Screening, cloning, immobilization and application prospects of a novel β-glucosidase from the soil metagenome
Qian Yao, Jin Xu, Nan Tang, Weiji Chen, Quliang Gu, He Li
Environmental Research.2024; 244: 117676. CrossRef - Characterization of a novel cold-adapted GH1 β-glucosidase from Psychrobacillus glaciei and its application in the hydrolysis of soybean isoflavone glycosides
Jinjian He, Jiajing Duan, Pinglian Yu, Yuying Li, Mansheng Wang, Xiu Zhang, Zishu Chen, Pengjun Shi
Current Research in Food Science.2024; 8: 100777. CrossRef - Biochemical and in silico structural properties of a thermo-acid stable β-glucosidase from Beauveria bassiana
Buka Magwaza, Ayodeji Amobonye, Prashant Bhagwat, Santhosh Pillai
Heliyon.2024; 10(7): e28667. CrossRef - Moderately thermostable GH1 β-glucosidases from hyperacidophilic archaeon Cuniculiplasma divulgatum S5
Anna N Khusnutdinova, Hai Tran, Saloni Devlekar, Marco A Distaso, Ilya V Kublanov, Tatiana Skarina, Peter Stogios, Alexei Savchenko, Manuel Ferrer, Olga V Golyshina, Alexander F Yakunin, Peter N Golyshin
FEMS Microbiology Ecology.2024;[Epub] CrossRef - Structural determinants of cold activity and glucose tolerance of a family 1 glycoside hydrolase (GH1) from Antarctic Marinomonas sp. ef1
Louise Jane Gourlay, Marco Mangiagalli, Elisabetta Moroni, Marina Lotti, Marco Nardini
The FEBS Journal.2024; 291(13): 2897. CrossRef - Partial characterization of β-glucosidase, β-xylosidase, and α-l-arabinofuranosidase from Jiangella alba DSM 45237 and their potential in lignocellulose-based biorefining
Zeynep Gül Aytaş, Münir Tunçer, Çağrı Seda Kul, Sümeyye Cilmeli, Nurayan Aydın, Tuğrul Doruk, Ali Osman Adıgüzel
Sustainable Chemistry and Pharmacy.2023; 31: 100900. CrossRef - Heterologous expression and characterization of salt-tolerant β-glucosidase from xerophilic Aspergillus chevalieri for hydrolysis of marine biomass
Hironori Senba, Daisuke Saito, Yukihiro Kimura, Shinichi Tanaka, Mikiharu Doi, Shinji Takenaka
Archives of Microbiology.2023;[Epub] CrossRef - Expression of β-Glucosidases from the Yak Rumen in Lactic Acid Bacteria: A Genetic Engineering Approach
Chuan Wang, Yuze Yang, Chunjuan Ma, Yongjie Sunkang, Shaoqing Tang, Zhao Zhang, Xuerui Wan, Yaqin Wei
Microorganisms.2023; 11(6): 1387. CrossRef - Structural and functional insights of a cold-adaptive β-glucosidase with very high glucose tolerance from Microbacterium sp. CIAB417
Anjali Purohit, Lata Pawar, Sudesh Kumar Yadav
Enzyme and Microbial Technology.2023; 169: 110284. CrossRef - Advances in cold-adapted enzymes derived from microorganisms
Yehui Liu, Na Zhang, Jie Ma, Yuqi Zhou, Qiang Wei, Chunjie Tian, Yi Fang, Rongzhen Zhong, Guang Chen, Sitong Zhang
Frontiers in Microbiology.2023;[Epub] CrossRef - Improving the catalytic activity of β-glucosidase from Coniophora puteana via semi-rational design for efficient biomass cellulose degradation
Hai-Yan Zhou, Qi Chen, Yi-Feng Zhang, Dou-Dou Chen, Xiao-Nan Yi, De-Shui Chen, Xin-Ping Cheng, Mian Li, Hong-Yan Wang, Kai-Qian Chen, Zhi-Qiang Liu, Yu-Guo Zheng
Enzyme and Microbial Technology.2023; 164: 110188. CrossRef - Study on the Biochemical Characterization and Selectivity of Three β-Glucosidases From Bifidobacterium adolescentis ATCC15703
Yanbo Hu, Liyuan Zhai, Huili Hong, Zenghui Shi, Jun Zhao, Duo Liu
Frontiers in Microbiology.2022;[Epub] CrossRef - Biochemical characterization of a novel glucose-tolerant GH3 β-glucosidase (Bgl1973) from Leifsonia sp. ZF2019
Yi He, Chenxi Wang, Ronghu Jiao, Qinxue Ni, Yan Wang, Qianxin Gao, Youzuo Zhang, Guangzhi Xu
Applied Microbiology and Biotechnology.2022; 106(13-16): 5063. CrossRef - Spatial variability of bacterial community compositions in the Mariana Trench
Wei Wang, Jingjing Sun, Jianhua Hao
Canadian Journal of Microbiology.2022; 68(10): 633. CrossRef - Life from a Snowflake: Diversity and Adaptation of Cold-Loving Bacteria among Ice Crystals
Carmen Rizzo, Angelina Lo Giudice
Crystals.2022; 12(3): 312. CrossRef - Cold-Active β-Galactosidases: Insight into Cold Adaptation Mechanisms and Biotechnological Exploitation
Marco Mangiagalli, Marina Lotti
Marine Drugs.2021; 19(1): 43. CrossRef - Two Key Amino Acids Variant of α-l-arabinofuranosidase from Bacillus subtilis Str. 168 with Altered Activity for Selective Conversion Ginsenoside Rc to Rd
Ru Zhang, Shi Quan Tan, Bian Ling Zhang, Zi Yu Guo, Liang Yu Tian, Pei Weng, Zhi Yong Luo
Molecules.2021; 26(6): 1733. CrossRef - Cloning, expression, biochemical characterization, and molecular docking studies of a novel glucose tolerant β-glucosidase from Saccharomonospora sp. NB11
Numan Saleh Zada, Ali Osman Belduz, Halil Ibrahim Güler, Anum Khan, Miray Sahinkaya, Arife Kaçıran, Hilal Ay, Malik Badshah, Aamer Ali Shah, Samiullah Khan
Enzyme and Microbial Technology.2021; 148: 109799. CrossRef - A novel β-glucosidase from a hot-spring metagenome shows elevated thermal stability and tolerance to glucose and ethanol
Girija Kaushal, Amit K. Rai, Sudhir P. Singh
Enzyme and Microbial Technology.2021; 145: 109764. CrossRef - Homology analysis of 35 β-glucosidases in Oenococcus oeni and biochemical characterization of a novel β-glucosidase BGL0224
Jie Zhang, Ning Zhao, Junnan Xu, Yiman Qi, Xinyuan Wei, Mingtao Fan
Food Chemistry.2021; 334: 127593. CrossRef - A glucose tolerant β-glucosidase from Thermomicrobium roseum that can hydrolyze biomass in seawater
Sushant K. Sinha, Maithili Datta, Supratim Datta
Green Chemistry.2021; 23(18): 7299. CrossRef - An overview on marine cellulolytic enzymes and their potential applications
Noora Barzkar, Muhammad Sohail
Applied Microbiology and Biotechnology.2020; 104(16): 6873. CrossRef - A Novel Glucose-Tolerant GH1 β-Glucosidase and Improvement of Its Glucose Tolerance Using Site-Directed Mutation
Jingjing Sun, Wei Wang, Yu Ying, Jianhua Hao
Applied Biochemistry and Biotechnology.2020; 192(3): 999. CrossRef - Magnetically recyclable catalytic nanoparticles grafted with Bacillus subtilis β-glucosidase for efficient cellobiose hydrolysis
Shivangi Chamoli, Ekta Yadav, Hemansi, Jitendra Kumar Saini, Ashok Kumar Verma, Naveen Kumar Navani, Piyush Kumar
International Journal of Biological Macromolecules.2020; 164: 1729. CrossRef - Engineering of β-Glucosidase Bgl15 with Simultaneously Enhanced Glucose Tolerance and Thermostability To Improve Its Performance in High-Solid Cellulose Hydrolysis
Lichuang Cao, Ran Chen, Xin Huang, Shuifeng Li, Sufang Zhang, Xiangpeng Yang, Zongmin Qin, Wei Kong, Wei Xie, Yuhuan Liu
Journal of Agricultural and Food Chemistry.2020; 68(19): 5391. CrossRef - A d-glucose- and d-xylose-tolerant GH1 β-glucosidase from Cellulosimicrobium funkei HY-13, a fibrolytic gut bacterium of Eisenia fetida
Do Young Kim, Jonghoon Kim, Sun Hwa Lee, Chungwook Chung, Dong-Ha Shin, Bon-Hwan Ku, Kwang-Hee Son, Ho-Yong Park
Process Biochemistry.2020; 94: 282. CrossRef - A rationally identified marine GH1 β‐glucosidase has distinguishing functional features for simultaneous saccharification and fermentation
Amanda S. de Sousa, Ricardo R. de Melo, Renan Y. Miyamoto, Mariana A. B. Morais, Liliane P. Andrade, Natália Milan, Mayara C. de Avila, Cláudia M. de Souza, Regina C. Adão, Josiane A. Scarpassa, Plínio S. Vieira, Leandro V. dos Santos, Carlos H. I. Ramos,
Biofuels, Bioproducts and Biorefining.2020; 14(6): 1163. CrossRef - Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest
Stefano Varrella, Michael Tangherlini, Cinzia Corinaldesi
Marine Drugs.2020; 18(2): 91. CrossRef - Aroma enhancement of instant green tea infusion using β-glucosidase and β-xylosidase
Ting Zhang, Ke Fang, Hui Ni, Ting Li, Li Jun Li, Qing Biao Li, Feng Chen
Food Chemistry.2020; 315: 126287. CrossRef - RNase G controls tpiA mRNA abundance in response to oxygen availability in Escherichia coli
Jaejin Lee, Dong-Ho Lee, Che Ok Jeon, Kangseok Lee
Journal of Microbiology.2019; 57(10): 910. CrossRef -
Comparison between irradiating and autoclaving citrus wastes as substrate for solid‐state fermentation by
Aspergillus aculeatus
H. Ni, T. Zhang, X. Guo, Y. Hu, A. Xiao, Z. Jiang, L. Li, Q. Li
Letters in Applied Microbiology.2019;[Epub] CrossRef - The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli
Minho Lee, Minju Joo, Minji Sim, Se-Hoon Sim, Hyun-Lee Kim, Jaejin Lee, Minkyung Ryu, Ji-Hyun Yeom, Yoonsoo Hahn, Nam-Chul Ha, Jang-Cheon Cho, Kangseok Lee
Scientific Reports.2019;[Epub] CrossRef - Identification and molecular characterization of a psychrophilic GH1 β-glucosidase from the subtropical soil microorganism Exiguobacterium sp. GXG2
Bangqiao Yin, Hengsen Gu, Xueyan Mo, Yue Xu, Bing Yan, Quanwen Li, Qian Ou, Bo Wu, Chen Guo, Chengjian Jiang
AMB Express.2019;[Epub] CrossRef
Research Support, Non-U.S. Gov'ts
- Molecular characterization of mammalian-adapted Korean-type avian H9N2 virus and evaluation of its virulence in mice
-
Kuk Jin Park , Min-Suk Song , Eun-Ha Kim , Hyeok-il Kwon , Yun Hee Baek , Eun-hye Choi , Su-Jin Park , Se Mi Kim , Young-il Kim , Won-Suk Choi , Dae-Won Yoo , Chul-Joong Kim , Young Ki Choi
-
J. Microbiol. 2015;53(8):570-577. Published online July 31, 2015
-
DOI: https://doi.org/10.1007/s12275-015-5329-4
-
-
49
View
-
0
Download
-
14
Crossref
-
Abstract
-
Avian influenza A virus (AIV) is commonly isolated from
domestic poultry and wild migratory birds, and the H9N2
subtype is the most prevalent and the major cause of severe
disease in poultry in Korea. In addition to the veterinary concerns
regarding the H9N2 subtype, it is also considered to
be the next potential human pandemic strain due to its rapid
evolution and interspecies transmission. In this study, we
utilize serial lung-to-lung passage of a low pathogenic avian
influenza virus (LPAI) H9N2 (A/Ck/Korea/163/04, WT163)
(Y439-lineage) in mice to increase pathogenicity and investigate
the potential virulence marker. Mouse-adapted H9N2
virus obtained high virulence (100% mortality) in mice after
98 serial passages. Sequence results show that the mouse
adaptation (ma163) possesses several mutations within seven
gene segments (PB2, PA, HA, NP, NA, M, and NS) relative
to the wild-type strain. The HA gene showed the most mutations
(at least 11) with one resulting in the loss of an N-glycosylation
site (at amino acid 166). Moreover, reverse genetic
studies established that an E627K substitution in PB2 and the
loss of the N-glycosylation site in the HA protein (aa166) are
critical virulence markers in the mouse-adapted H9N2 virus.
Thus, these results add to the increasing body of mutational
analysis data defining the function of the viral polymerase
and HA genes and their roles in mammalian host adaptation.
To our knowledge, this is first report of the generation
of a mammalian-adapted Korea H9N2 virus (Y493-lineages).
Therefore, this study offers valuable insights into the molecular
evolution of the LPAI Korean H9N2 in a new host and
adds to the current knowledge of the molecular markers associated
with increased virulence.
-
Citations
Citations to this article as recorded by

- An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization
Carol M. Sheppard, Daniel H. Goldhill, Olivia C. Swann, Ecco Staller, Rebecca Penn, Olivia K. Platt, Ksenia Sukhova, Laury Baillon, Rebecca Frise, Thomas P. Peacock, Ervin Fodor, Wendy S. Barclay
Nature Communications.2023;[Epub] CrossRef - Current situation and control strategies of H9N2 avian influenza in South Korea
Mingeun Sagong, Kwang-Nyeong Lee, Eun-Kyoung Lee, Hyunmi Kang, Young Ki Choi, Youn-Jeong Lee
Journal of Veterinary Science.2023;[Epub] CrossRef - Antigenic Evolution Characteristics and Immunological Evaluation of H9N2 Avian Influenza Viruses from 1994–2019 in China
Qingzheng Liu, Lingcai Zhao, Yanna Guo, Yongzhen Zhao, Yingfei Li, Na Chen, Yuanlu Lu, Mengqi Yu, Lulu Deng, Jihui Ping
Viruses.2022; 14(4): 726. CrossRef - Molecular epidemiology and pathogenicity of H5N1 and H9N2 avian influenza viruses in clinically affected chickens on farms in Bangladesh
Ripatun Nahar Ripa, Joshua E. Sealy, Jayna Raghwani, Tridip Das, Himel Barua, Md. Masuduzzaman, A. K. M. Saifuddin, Md. Reajul Huq, Mohammad Inkeyas Uddin, Munir Iqbal, Ian Brown, Nicola S. Lewis, Dirk Pfeiffer, Guillaume Fournie, Paritosh Kumar Biswas
Emerging Microbes & Infections.2021; 10(1): 2223. CrossRef - Mouse adaptation of the H9N2 avian influenza virus causes the downregulation of genes related to innate immune responses and ubiquitin-mediated proteolysis in mice
Jing Guo, Xinxin Gao, Baotao Liu, Yubao Li, Wenqiang Liu, Jianbiao Lu, Cheng Liu, Rui Xue, Xuyong Li
Medical Microbiology and Immunology.2020; 209(2): 151. CrossRef - H9 Influenza Viruses: An Emerging Challenge
Silvia Carnaccini, Daniel R. Perez
Cold Spring Harbor Perspectives in Medicine.2020; 10(6): a038588. CrossRef - Adaptive amino acid substitutions enable transmission of an H9N2 avian influenza virus in guinea pigs
Liu Lina, Chen Saijuan, Wang Chengyu, Lu Yuefeng, Dong Shishan, Chen Ligong, Guo Kangkang, Guo Zhendong, Li Jiakai, Zhang Jianhui, Luo Qingping, Zhang Wenting, Shang Yu, Wang Honglin, Zhang Tengfei, Wen Guoyuan, Zhu Jiping, Zhang Chunmao, Jin Meilin, Gao
Scientific Reports.2019;[Epub] CrossRef - A PB1-K577E Mutation in H9N2 Influenza Virus Increases Polymerase Activity and Pathogenicity in Mice
Haruhiko Kamiki, Hiromichi Matsugo, Tomoya Kobayashi, Hiroho Ishida, Akiko Takenaka-Uema, Shin Murakami, Taisuke Horimoto
Viruses.2018; 10(11): 653. CrossRef - Genetics and biological property analysis of Korea lineage of influenza A H9N2 viruses
Min Kang, Hyung-Kwan Jang
Veterinary Microbiology.2017; 204: 96. CrossRef - The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents
Won-Suk Choi, Khristine Kaith S. Lloren, Yun Hee Baek, Min-Suk Song
Clinical and Experimental Vaccine Research.2017; 6(2): 83. CrossRef - Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse
Won-Suk Choi, Yun Hee Baek, Jin Jung Kwon, Ju Hwan Jeong, Su-Jin Park, Young-il Kim, Sun-Woo Yoon, Jungwon Hwang, Myung Hee Kim, Chul-Joong Kim, Richard J. Webby, Young Ki Choi, Min-Suk Song
Scientific Reports.2017;[Epub] CrossRef - Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy
Se Mi Kim, Young-Il Kim, Su-Jin Park, Eun-Ha Kim, Hyeok-il Kwon, Young-Jae Si, In-Won Lee, Min-Suk Song, Young Ki Choi, Jae U. Jung
Journal of Virology.2017;[Epub] CrossRef - Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014
Duong Mai Thuy, Thomas P. Peacock, Vu Thi Ngoc Bich, Thomas Fabrizio, Dang Nguyen Hoang, Nguyen Dang Tho, Nguyen Thi Diep, Minh Nguyen, Le Nguyen Minh Hoa, Hau Thi Thu Trang, Marc Choisy, Ken Inui, Scott Newman, Nguyen vu Trung, Rogier van Doorn, Thanh Lo
Infection, Genetics and Evolution.2016; 44: 530. CrossRef - PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor
Hanna Sediri, Swantje Thiele, Folker Schwalm, Gülsah Gabriel, Hans-Dieter Klenk
Journal of General Virology.2016; 97(1): 39. CrossRef
- DBA/2 Mouse as an Animal Model for Anti-influenza Drug Efficacy Evaluation
-
Jin Il Kim , Sehee Park , Sangmoo Lee , Ilseob Lee , Jun Heo , Min-Woong Hwang , Joon-Yong Bae , Donghwan Kim , Seok-Il Jang , Mee Sook Park , Man-Seong Park
-
J. Microbiol. 2013;51(6):866-871. Published online December 19, 2013
-
DOI: https://doi.org/10.1007/s12275-013-3428-7
-
-
35
View
-
0
Download
-
14
Crossref
-
Abstract
-
Influenza viruses are seasonally recurring human pathogens.
Vaccines and antiviral drugs are available for influenza.
However, the viruses, which often change themselves via
antigenic drift and shift, demand constant efforts to update
vaccine antigens every year and develop new agents with
broad-spectrum antiviral efficacy. An animal model is critical
for such efforts. While most human influenza viruses are
unable to kill BALB/c mice, some strains have been shown
to kill DBA/2 mice without prior adaptation. Therefore, in
this study, we explored the feasibility of employing DBA/2
mice as a model in the development of anti-influenza drugs.
Unlike the BALB/c strain, DBA/2 mice were highly susceptible
and could be killed with a relatively low titer (50%
DBA/2 lethal dose = 102.83 plaque-forming units) of the A/
Korea/01/2009 virus (2009 pandemic H1N1 virus). When
treated with a neuraminidase inhibitor, oseltamivir phosphate,
infected DBA/2 mice survived until 14 days postinfection.
The reduced morbidity of the infected DBA/2
mice was also consistent with the oseltamivir treatment.
Taking these data into consideration, we propose that the
DBA/2 mouse is an excellent animal model to evaluate antiviral
efficacy against influenza infection and can be further
utilized for combination therapies or bioactivity models of
existing and newly developed anti-influenza drugs.
-
Citations
Citations to this article as recorded by

- Swine influenza A virus isolates containing the pandemic H1N1 origin matrix gene elicit greater disease in the murine model
Shelly J. Curran, Emily F. Griffin, Lucas M. Ferreri, Constantinos S. Kyriakis, Elizabeth W. Howerth, Daniel R. Perez, S. Mark Tompkins, Robert Paul de Vries
Microbiology Spectrum.2024;[Epub] CrossRef - Kinetic of the Antibody Response Following AddaVax-Adjuvanted Immunization with Recombinant Influenza Antigens
Ted. M. Ross, Naveen Gokanapudi, Pan Ge, Hua Shi, Robert A. Richardson, Spencer R. Pierce, Pedro Sanchez, Subhan Ullah, Eliana De Luca, Giuseppe A. Sautto
Vaccines.2022; 10(8): 1315. CrossRef - Peptidylarginine Deiminase 2 in Murine Antiviral and Autoimmune Antibody Responses
Aisha M. Mergaert, Michael F. Denny, Brock Kingstad-Bakke, Mandar Bawadekar, S. Janna Bashar, Thomas F. Warner, Marulasiddappa Suresh, Miriam A. Shelef, Baohui Xu
Journal of Immunology Research.2022; 2022: 1. CrossRef - The morphine/heroin vaccine decreased the heroin-induced antinociceptive and reinforcing effects in three inbred strains mouse
Susana Barbosa-Méndez, Maura Matus-Ortega, Ricardo Hernández-Miramontes, Alberto Salazar-Juárez
International Immunopharmacology.2021; 98: 107887. CrossRef - Animal models for the risk assessment of viral pandemic potential
Mee Sook Park, Jin Il Kim, Joon-Yong Bae, Man-Seong Park
Laboratory Animal Research.2020;[Epub] CrossRef - In Vivo Assessment of Antibody-Dependent Enhancement of Influenza B Infection
Gautham K Rao, Rodney A Prell, Steven T Laing, Stefanie C M Burleson, Allen Nguyen, Jacqueline M McBride, Crystal Zhang, Daniel Sheinson, Wendy G Halpern
Toxicological Sciences.2019; 169(2): 409. CrossRef - Targeting the proviral host kinase, FAK, limits influenza a virus pathogenesis and NFkB-regulated pro-inflammatory responses
Silke Bergmann, Husni Elbahesh
Virology.2019; 534: 54. CrossRef - Effects of heat-killed Lactobacillus plantarum against influenza viruses in mice
Sehee Park, Jin Il Kim, Joon-Yong Bae, Kirim Yoo, Hyunung Kim, In-Ho Kim, Man-Seong Park, Ilseob Lee
Journal of Microbiology.2018; 56(2): 145. CrossRef - Alternative Strategy for a Quadrivalent Live Attenuated Influenza Virus Vaccine
Zhimin Wan, Stivalis Cardenas Garcia, Jing Liu, Jefferson Santos, Silvia Carnaccini, Ginger Geiger, Lucas Ferreri, Daniela Rajao, Daniel R. Perez, Adolfo García-Sastre
Journal of Virology.2018;[Epub] CrossRef - PPARgamma Deficiency Counteracts Thymic Senescence
David Ernszt, Krisztina Banfai, Zoltan Kellermayer, Attila Pap, Janet M. Lord, Judit E. Pongracz, Krisztian Kvell
Frontiers in Immunology.2017;[Epub] CrossRef - Repeated Low-Dose Influenza Virus Infection Causes Severe Disease in Mice: a Model for Vaccine Evaluation
Yufeng Song, Xiang Wang, Hongbo Zhang, Xinying Tang, Min Li, Jufang Yao, Xia Jin, Hildegund C. J. Ertl, Dongming Zhou, D. S. Lyles
Journal of Virology.2015; 89(15): 7841. CrossRef - A broadly neutralizing human monoclonal antibody is effective against H7N9
Kannan Tharakaraman, Vidya Subramanian, Karthik Viswanathan, Susan Sloan, Hui-Ling Yen, Dale L. Barnard, Y. H. Connie Leung, Kristy J. Szretter, Tyree J. Koch, James C. Delaney, Gregory J. Babcock, Gerald N. Wogan, Ram Sasisekharan, Zachary Shriver
Proceedings of the National Academy of Sciences.2015; 112(35): 10890. CrossRef - Anti-influenza effect of Cordyceps militaris through immunomodulation in a DBA/2 mouse model
Hwan Hee Lee, Heejin Park, Gi-Ho Sung, Kanghyo Lee, Taeho Lee, Ilseob Lee, Man-seong Park, Yong Woo Jung, Yu Su Shin, Hyojeung Kang, Hyosun Cho
Journal of Microbiology.2014; 52(8): 696. CrossRef - Combination Effects of Peramivir and Favipiravir against Oseltamivir-Resistant 2009 Pandemic Influenza A(H1N1) Infection in Mice
Sehee Park, Jin Il Kim, Ilseob Lee, Sangmoo Lee, Min-Woong Hwang, Joon-Yong Bae, Jun Heo, Donghwan Kim, Seok-Il Jang, Hyejin Kim, Hee Jin Cheong, Jin-Won Song, Ki-Joon Song, Luck Ju Baek, Man-Seong Park, Balaji Manicassamy
PLoS ONE.2014; 9(7): e101325. CrossRef
- Complete Genome of Leptospirillum ferriphilum ML-04 Provides Insight into Its Physiology and Environmental Adaptation
-
Shuang Mi , Jian Song , Jianqun Lin , Yuanyuan Che , Huajun Zheng , Jianqiang Lin
-
J. Microbiol. 2011;49(6):890-901. Published online December 28, 2011
-
DOI: https://doi.org/10.1007/s12275-011-1099-9
-
-
33
View
-
0
Download
-
49
Scopus
-
Abstract
-
Leptospirillum ferriphilum has been identified as the dominant, moderately thermophilic, bioleaching microorganism in bioleaching processes. It is an acidic and chemolithoautrophic bacterium that gains electrons from ferrous iron oxidation for energy production and cell growth. Genetic information about this microorganism has been limited until now, which has hindered its further exploration. In this study, the complete genome of L. ferripilum ML-04 is sequenced and annotated. The bacterium has a single circular chromosome of 2,406,157 bp containing 2,471 coding sequences (CDS), 2 rRNA operons, 48 tRNA genes, a large number of mobile genetic elements and 2 genomic islands. In silico analysis shows L. ferriphilum ML-04 fixes carbon through a reductive citric acid (rTCA) cycle, and obtains nitrogen through ammonium assimilation. The genes related to “cell envelope biogenesis, outer membrane” (6.9%) and “DNA replication, recombination and repair” (5.6%) are abundant, and a large number of genes related to heavy metal detoxification, oxidative and acidic stress defense, and signal transduction pathways were detected. The genomic plasticity, plentiful cell envelope components, inorganic element metabolic abilities and stress response mechanisms found the base for this organism’s survival in the bioleaching niche.
- Adaptation and Cross-Adaptation of Listeria monocytogenes and Salmonella enterica to Poultry Decontaminants
-
Alicia Alonso-Hernando , Rosa Capita , Miguel Prieto , Carlos Alonso-Calleja
-
J. Microbiol. 2009;47(2):142-146. Published online May 2, 2009
-
DOI: https://doi.org/10.1007/s12275-008-0237-5
-
-
35
View
-
0
Download
-
20
Scopus
-
Abstract
-
Information on the potential for acquired reduced susceptibility of bacteria to poultry decontaminants occurring is lacking. Minimal Inhibitory Concentrations (MICs) were established for assessing the initial susceptibility and the adaptative and cross-adaptative responses of four bacterial strains (Listeria monocytogenes serovar 1/2a, L. monocytogenes serovar 4b, Salmonella enterica serotype Typhimurium, and S. enterica serotype Enteritidis) to four poultry decontaminants (trisodium phosphate, acidified sodium chlorite -ASC-, citric acid, and peroxyacetic acid). The initial susceptibility was observed to differ among species (all decontaminants) and between Salmonella strains (ASC). These inter- and intra-specific variations highlight (1) the need for strict monitoring of decontaminant concentrations to inactivate all target pathogens of concern, and (2) the importance of selecting adequate test strains in decontamination studies. MICs of ASC (0.17±0.02 to 0.21±0.02 mg/ml) were higher than the U.S. authorized concentration when applied as a pre-chiller or chiller solution (0.05 to 0.15 mg/ml). Progressively increasing decontaminant concentrations resulted in reduced susceptibility of strains. The highest increase in MIC was 1.88 to 2.71-fold (ASC). All decontaminants were shown to cause cross-adaptation of strains between both related and unrelated compounds, the highest increase in MIC being 1.82-fold (ASC). Our results suggest that the in-use concentrations of ASC could, in certain conditions, be ineffective against Listeria and Salmonella strains. The adaptative and cross-adaptative responses of strains tested to poultry decontaminants are of minor concern. However, the observations being presented here are based on in vitro studies, and further research into practical applications are needed in order to confirm these findings.
- Identification and Expression of the cym, cmt, and tod Catabolic Genes from Pseudomonas putida KL47: Expression of the Regulatory todST Genes as a Factor for Catabolic Adaptation
-
Kyoung Lee , Eun Kyeong Ryu , Kyung Soon Choi , Min Chul Cho , Jae Jun Jeong , Eun Na Choi , Soo O Lee , Do-Young Yoon , Ingyu Hwang , Chi-Kyung Kim
-
J. Microbiol. 2006;44(2):192-199.
-
DOI: https://doi.org/2365 [pii]
-
-
Abstract
-
Pseudomonas putida KL47 is a natural isolate that assimilates benzene, 1-alkylbenzene (C1-C4), biphenyl, p-cumate, and p-cymene. The genetic background of strain KL47 underlying the broad range of growth substrates was examined. It was found that the cym and cmt operons are constitutively expressed due to a lack of the cymR gene, and the tod operon is still inducible by toluene and biphenyl. The entire array of gene clusters responsible for the catabolism of toluene and p-cymene/p-cumate has been cloned in a cosmid vector, pLAFR3, and were named pEK6 and pEK27, respectively. The two inserts overlap one another and the nucleotide sequence (42,505 bp) comprising the cym, cmt, and tod operons and its flanking genes in KL47 are almost identical (>99%) to those of P. putida F1. In the cloned DNA fragment, two genes with unknown functions, labeled cymZ and cmtR, were newly identified and show high sequence homology to dienelactone hydrolase and CymR proteins, respectively. The cmtR gene was identified in the place of the cmtI gene of previous annotation. Western blot analysis showed that, in strains F1 and
KL47, the todT gene is not expressed during growth on Luria Bertani medium. In minimal basal salt medium, expression of the todT gene is inducible by toluene, but not by biphenyl in strain F1; however, it is constantly expressed in strain KL47, indicating that high levels of expression of the todST genes with one amino acid substitution in TodS might provide strain KL47 with a means of adaptation of the tod catabolic operon to various aromatic hydrocarbons.
Review
- The Use of the Rare UUA Codon to Define "Expression Space" for Genes Involved in Secondary Metabolism, Development and Environmental Adaptation in Streptomyces
-
Keith F. Chater , Govind Chandra
-
J. Microbiol. 2008;46(1):1-11.
-
DOI: https://doi.org/10.1007/s12275-007-0233-1
-
-
35
View
-
0
Download
-
118
Scopus
-
Abstract
-
In Streptomyces coelicolor, bldA encodes the only tRNA for a rare leucine codon, UUA. This tRNA is unnecessary for growth, but is required for some aspects of secondary metabolism and morphological development, as revealed by the phenotypes of bldA mutants in diverse streptomycetes. This article is a comprehensive review of out understanding of this unusual situation. Based on information from four sequenced genomes it now appears that, typically, about 2~3% of genes in any one streptomycete contain a TTA codon, most having been acquired through species-specific horizontal gene transfer. Among the few widely conserved TTA-containing genes, mutations in just one, the pleiotropic regulatory gene adpA, give an obvious phenotype: such mutants are defective in aerial growth and sporulation, but vary in the extent of their impairment in secondary metabolism in different streptomycetes. The TTA codon in adpA is largely responsible for the morphological phenotype of a bldA mutant of S. coelicolor. AdpA-dependent targets include several genes involved in the integrated action of extracellular proteases that, at least in some species, are involved in the conversion of primary biomass into spores. The effects of bldA mutations on secondary metabolism are mostly attributable to the presence of TTA codons in pathway-specific genes, particularly in transcriptional activator genes. This is not confined to S. coelicolor-it is true for about half of all known antibiotic biosynthetic gene sets from streptomycetes. Combined microarray and proteomic analysis of liquid (and therefore non-sporulating) S. coelicolor bldA mutant cultures revealed effects of the mutation during rapid growth, during transition phase, and in stationary phase. Some of these effects may be secondary consequences of changes in the pattern of ppGpp accumulation. It is argued that the preferential accumulation of the bldA tRNA under conditions in which growth is significantly constrained has evolved to favour the expression of genes that confer adaptive benefits in intermittently encountered sub-optimal environments. The evolution of this system may have been a secondary consequence of the selective pressure exerted by bacteriophage attack. Some biotechnological implications of bldA phenomenology are considered.