Silver nanoparticles (AgNPs) exhibit strong antibacterial activity and do not easily induce drug resistance; however, the
poor stability and biocompatibility in solution limit their widespread application. In this study, AgNPs were modified with
Polygonatum sibiricum Polysaccharide (PSP) to synthesize PSP@AgNPs with good stability, biocompatibility, and antibacterial
activity. When PSP@AgNP synthesis was performed under a reaction time of 70 min, a reaction temperature of 35 °C,
and an AgNO3-
to-PSP volume ratio of 1:1, the synthesized PSP@AgNPs were more regular and uniform than AgNPs, and
their particle size was around 10 nm. PSP@AgNPs exhibited lower cytotoxicity and hemolysis, and stronger bacteriostatic
activity. PSP@AgNPs damage the integrity and internal structure of cells, resulting in the leakage of intracellular nucleic
acids and proteins. The rate of cell membrane damage in Escherichia coli and Staphylococcus aureus treated with PSP@
AgNPs increased by 38.52% and 43.75%, respectively, compared with that of AgNPs. PSP@AgNPs inhibit the activities
of key enzymes related to antioxidant, energy and substance metabolism in cells. The inhibitory effects on the activities of
superoxide dismutase (SOD), catalase (CAT), adenosine triphosphate enzyme (ATPase), malate dehydrogenase (MDH),
and succinate dehydrogenase (SDH) in E. coli and S. aureus cells were significantly higher than those of AgNPs. In addition,
compared with AgNPs, PSP@AgNPs promote faster healing of infected wounds. Therefore, PSP@AgNPs represent
potential antibacterial agents against wound infections.
Citations
Citations to this article as recorded by
Improving the biocompatibility and antibacterial efficacy of silver nanoparticles functionalized with (LLRR)3 antimicrobial peptide Rongyu Li, Jiaqing Mao, Peng Zheng, Ruonan Wang, Zicheng Yang, Senhe Qian World Journal of Microbiology and Biotechnology.2024;[Epub] CrossRef
Advancing engineered approaches for sustainable wound regeneration and repair: Harnessing the potential of green synthesized silver nanoparticles J. Nandhini, E. Karthikeyan, E. Elizabeth Rani, V.S. Karthikha, D. Sakthi Sanjana, H. Jeevitha, S. Rajeshkumar, Vijayan Venugopal, A. Priyadharshan Engineered Regeneration.2024; 5(3): 306. CrossRef
Effect of Polygonatum sibiricum on biological toxicity of zinc oxide nanoparticles during respiratory exposure Jingjing Yao, Wanqing Yang, Liang Tang, Dicheng Yang, Yan Xu, Shenmin Zhu, Jun Zhu RSC Advances.2024; 14(43): 31360. CrossRef
Enhancing Healing of Infected Wounds with Glycerin‐Modified Sodium Alginate/Silk Sericin Composite Film Functionalized with Polygonatum sibiricum Polysaccharide‐Capped Silver Nanoparticles Zicheng Yang, Rongyu Li, Ruonan Wang, Senhe Qian ChemistrySelect.2024;[Epub] CrossRef
Host Defense Peptides: Exploiting an Innate Immune Component Against Infectious Diseases and Cancer Taiwo Scholes Adewole, Oladiran Boniface Oladokun, Adenike Kuku International Journal of Peptide Research and Therapeutics.2024;[Epub] CrossRef
Research progress on medicinal components and pharmacological activities of polygonatum sibiricum Ruilian Liu, Xili Zhang, Yuhan Cai, Shuang Xu, Qian Xu, Chengli Ling, Xin Li, Wenjiao Li, Pingan Liu, Wenlong Liu Journal of Ethnopharmacology.2024; 328: 118024. CrossRef
A comprehensive review on the potential applications of medicine Polygonatum species in the food sector Mi Li, Bingzong Xie, Lewen Li, Yunge Zhang, Qingmin Chen, Jian Ju, Yanli Ma Food Bioscience.2024; 60: 104116. CrossRef
Fabrication of Highly Stable Polyurushiol-Decorated Silver Nanoparticles and Evaluation of Their Antibacterial and Anti-Microalgae Activities Lu Zheng, Jide Zhu, Jipeng Chen, Yanlian Xu, Lilong Jiang Journal of Inorganic and Organometallic Polymers and Materials.2024;[Epub] CrossRef
Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review Xiao Tang, Li Li, Gehang You, Xinyi Li, Jian Kang Frontiers in Bioengineering and Biotechnology.2023;[Epub] CrossRef
The yeast Saccharomyces cerevisiae has two isoforms of
NADP+-dependent glutamate dehydrogenase (Gdh1 and
Gdh3) that catalyze the synthesis of glutamate from α-ketoglutarate
and NH4
+. In the present study, we confirmed that
Gdh3, but not Gdh1, mainly contributes to the oxidative stress
resistance of stationary-phase cells and found evidence suggesting
that the insignificance of Gdh1 to stress resistance is
possibly resulted from conditional and reversible aggregation
of Gdh1 into punctuate foci initiated in parallel with postdiauxic
growth. Altered localization to the mitochondria or
peroxisomes prevented Gdh1, which was originally localized
in the cytoplasm, from stationary phase-specific aggregation,
suggesting that some cytosolic factors are involved in the
process of Gdh1 aggregation. Glucose starvation triggered
the transition of the soluble form of Gdh1 into the insoluble
aggregate form, which could be redissolved by replenishing
glucose, without any requirement for protein synthesis. Mutational
analysis showed that the N-terminal proximal region
of Gdh1 (NTP1, aa 21-26, TLFEQH) is essential for glucose
starvation-induced aggregation. We also found that the substitution
of NTP1 with the corresponding region of Gdh3
(NTP3) significantly increased the contribution of the mutant
Gdh1 to the stress resistance of stationary-phase cells. Thus,
this suggests that NTP1 is responsible for the negligible role
of Gdh1 in maintaining the oxidative stress resistance of stationary-
phase cells and the stationary phase-specific stresssensitive
phenotype of the mutants lacking Gdh3.
Citations
Citations to this article as recorded by
Genomic characterization of denitrifying methylotrophic Pseudomonas aeruginosa strain AAK/M5 isolated from municipal solid waste landfill soil Ashish Kumar Singh, Rakesh Kumar Gupta, Hemant J. Purohit, Anshuman Arun Khardenavis World Journal of Microbiology and Biotechnology.2022;[Epub] CrossRef
Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism Vera A. Borzova, Svetlana G. Roman, Anastasiya V. Pivovarova, Natalia A. Chebotareva International Journal of Molecular Sciences.2022; 23(23): 15392. CrossRef