Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "aggregation"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Silver Nanoparticles Modified with Polygonatum sibiricum Polysaccharide Improve Biocompatibility and Infected Wound Bacteriostasis
Ruonan Wang , Rongyu Li , Peng Zheng , Zicheng Yang , Cheng Qian , Zhou Wang , Senhe Qian
J. Microbiol. 2023;61(5):543-558.   Published online April 13, 2023
DOI: https://doi.org/10.1007/s12275-023-00042-8
  • 51 View
  • 0 Download
  • 8 Web of Science
  • 9 Crossref
AbstractAbstract
Silver nanoparticles (AgNPs) exhibit strong antibacterial activity and do not easily induce drug resistance; however, the poor stability and biocompatibility in solution limit their widespread application. In this study, AgNPs were modified with Polygonatum sibiricum Polysaccharide (PSP) to synthesize PSP@AgNPs with good stability, biocompatibility, and antibacterial activity. When PSP@AgNP synthesis was performed under a reaction time of 70 min, a reaction temperature of 35 °C, and an AgNO3- to-PSP volume ratio of 1:1, the synthesized PSP@AgNPs were more regular and uniform than AgNPs, and their particle size was around 10 nm. PSP@AgNPs exhibited lower cytotoxicity and hemolysis, and stronger bacteriostatic activity. PSP@AgNPs damage the integrity and internal structure of cells, resulting in the leakage of intracellular nucleic acids and proteins. The rate of cell membrane damage in Escherichia coli and Staphylococcus aureus treated with PSP@ AgNPs increased by 38.52% and 43.75%, respectively, compared with that of AgNPs. PSP@AgNPs inhibit the activities of key enzymes related to antioxidant, energy and substance metabolism in cells. The inhibitory effects on the activities of superoxide dismutase (SOD), catalase (CAT), adenosine triphosphate enzyme (ATPase), malate dehydrogenase (MDH), and succinate dehydrogenase (SDH) in E. coli and S. aureus cells were significantly higher than those of AgNPs. In addition, compared with AgNPs, PSP@AgNPs promote faster healing of infected wounds. Therefore, PSP@AgNPs represent potential antibacterial agents against wound infections.

Citations

Citations to this article as recorded by  
  • Improving the biocompatibility and antibacterial efficacy of silver nanoparticles functionalized with (LLRR)3 antimicrobial peptide
    Rongyu Li, Jiaqing Mao, Peng Zheng, Ruonan Wang, Zicheng Yang, Senhe Qian
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Advancing engineered approaches for sustainable wound regeneration and repair: Harnessing the potential of green synthesized silver nanoparticles
    J. Nandhini, E. Karthikeyan, E. Elizabeth Rani, V.S. Karthikha, D. Sakthi Sanjana, H. Jeevitha, S. Rajeshkumar, Vijayan Venugopal, A. Priyadharshan
    Engineered Regeneration.2024; 5(3): 306.     CrossRef
  • Effect of Polygonatum sibiricum on biological toxicity of zinc oxide nanoparticles during respiratory exposure
    Jingjing Yao, Wanqing Yang, Liang Tang, Dicheng Yang, Yan Xu, Shenmin Zhu, Jun Zhu
    RSC Advances.2024; 14(43): 31360.     CrossRef
  • Enhancing Healing of Infected Wounds with Glycerin‐Modified Sodium Alginate/Silk Sericin Composite Film Functionalized with Polygonatum sibiricum Polysaccharide‐Capped Silver Nanoparticles
    Zicheng Yang, Rongyu Li, Ruonan Wang, Senhe Qian
    ChemistrySelect.2024;[Epub]     CrossRef
  • Host Defense Peptides: Exploiting an Innate Immune Component Against Infectious Diseases and Cancer
    Taiwo Scholes Adewole, Oladiran Boniface Oladokun, Adenike Kuku
    International Journal of Peptide Research and Therapeutics.2024;[Epub]     CrossRef
  • Research progress on medicinal components and pharmacological activities of polygonatum sibiricum
    Ruilian Liu, Xili Zhang, Yuhan Cai, Shuang Xu, Qian Xu, Chengli Ling, Xin Li, Wenjiao Li, Pingan Liu, Wenlong Liu
    Journal of Ethnopharmacology.2024; 328: 118024.     CrossRef
  • A comprehensive review on the potential applications of medicine Polygonatum species in the food sector
    Mi Li, Bingzong Xie, Lewen Li, Yunge Zhang, Qingmin Chen, Jian Ju, Yanli Ma
    Food Bioscience.2024; 60: 104116.     CrossRef
  • Fabrication of Highly Stable Polyurushiol-Decorated Silver Nanoparticles and Evaluation of Their Antibacterial and Anti-Microalgae Activities
    Lu Zheng, Jide Zhu, Jipeng Chen, Yanlian Xu, Lilong Jiang
    Journal of Inorganic and Organometallic Polymers and Materials.2024;[Epub]     CrossRef
  • Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review
    Xiao Tang, Li Li, Gehang You, Xinyi Li, Jian Kang
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef
The NADP+-dependent glutamate dehydrogenase Gdh1 is subjected to glucose starvation-induced reversible aggregation that affects stress resistance in yeast
Woo Hyun Lee , Ju Yeong Oh , Pil Jae Maeng
J. Microbiol. 2019;57(10):884-892.   Published online August 3, 2019
DOI: https://doi.org/10.1007/s12275-019-9065-z
  • 51 View
  • 0 Download
  • 3 Web of Science
  • 2 Crossref
AbstractAbstract
The yeast Saccharomyces cerevisiae has two isoforms of NADP+-dependent glutamate dehydrogenase (Gdh1 and Gdh3) that catalyze the synthesis of glutamate from α-ketoglutarate and NH4 +. In the present study, we confirmed that Gdh3, but not Gdh1, mainly contributes to the oxidative stress resistance of stationary-phase cells and found evidence suggesting that the insignificance of Gdh1 to stress resistance is possibly resulted from conditional and reversible aggregation of Gdh1 into punctuate foci initiated in parallel with postdiauxic growth. Altered localization to the mitochondria or peroxisomes prevented Gdh1, which was originally localized in the cytoplasm, from stationary phase-specific aggregation, suggesting that some cytosolic factors are involved in the process of Gdh1 aggregation. Glucose starvation triggered the transition of the soluble form of Gdh1 into the insoluble aggregate form, which could be redissolved by replenishing glucose, without any requirement for protein synthesis. Mutational analysis showed that the N-terminal proximal region of Gdh1 (NTP1, aa 21-26, TLFEQH) is essential for glucose starvation-induced aggregation. We also found that the substitution of NTP1 with the corresponding region of Gdh3 (NTP3) significantly increased the contribution of the mutant Gdh1 to the stress resistance of stationary-phase cells. Thus, this suggests that NTP1 is responsible for the negligible role of Gdh1 in maintaining the oxidative stress resistance of stationary- phase cells and the stationary phase-specific stresssensitive phenotype of the mutants lacking Gdh3.

Citations

Citations to this article as recorded by  
  • Genomic characterization of denitrifying methylotrophic Pseudomonas aeruginosa strain AAK/M5 isolated from municipal solid waste landfill soil
    Ashish Kumar Singh, Rakesh Kumar Gupta, Hemant J. Purohit, Anshuman Arun Khardenavis
    World Journal of Microbiology and Biotechnology.2022;[Epub]     CrossRef
  • Effects of Molecular Crowding and Betaine on HSPB5 Interactions, with Target Proteins Differing in the Quaternary Structure and Aggregation Mechanism
    Vera A. Borzova, Svetlana G. Roman, Anastasiya V. Pivovarova, Natalia A. Chebotareva
    International Journal of Molecular Sciences.2022; 23(23): 15392.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP