Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "analogue"
Filter
Filter
Article category
Keywords
Publication year
Review
MINIREVIEW] Bioactive Activities of Natural Products against Herpesvirus Infection
Myoungki Son , Minjung Lee , Gi-Ho Sung , Taeho Lee , Yu Su Shin , Hyosun Cho , Paul M. Lieberman , Hyojeung Kang
J. Microbiol. 2013;51(5):545-551.   Published online October 31, 2013
DOI: https://doi.org/10.1007/s12275-013-3450-9
  • 14 View
  • 0 Download
  • 34 Citations
AbstractAbstract
More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies.
Research Support, Non-U.S. Gov't
The Intracellular Mechanism of Action on Escherichia coli of BF2-A/C, Two Analogues of the Antimicrobial Peptide Buforin 2
Gang Hao , Yong-Hui Shi , Ya-Li Tang , Guo-Wei Le
J. Microbiol. 2013;51(2):200-206.   Published online April 27, 2013
DOI: https://doi.org/10.1007/s12275-013-2441-1
  • 14 View
  • 0 Download
  • 32 Citations
AbstractAbstract
In the present study, the antimicrobial peptides BF2-A and BF2-C, two analogues of Buforin 2, were chemically synthesized and the activities were assayed. To elucidate the bactericidal mechanism of BF2-A/C and their different antimicrobial activities, the influence of peptides to E. coli cell membrane and targets of intracellular action were researched. Obviously, BF2-A and BF2-C did not induce the influx of PI into the E. coli cells, indicating nonmemebrane permeabilizing killing action. The FITC-labeled BF2-A/C could penetrate the E. coli cell membrane and BF2-C penetrated the cells more efficiently. Furthermore, BF2-A/C could bind to DNA and RNA respectively, and the affinity of BF2-C to DNA was powerful at least over 4 times than that of BF2-A. The present results implied that BF2-A and BF2-C inhibited the cellular functions by binding to DNA and RNA of cells after penetrating the cell membranes, resulting in the rapid cell death. The structure-activity relationship analysis of BF2-A/C revealed that the cell-penetrating efficiency and the affinity ability to DNA were critical factors for determining the antimicrobial potency of both peptides. The more efficient cellpenetrating and stronger affinity to DNA caused that BF2-C displayed more excellent antimicrobial activity and rapid killing kinetics than BF2-A.

Journal of Microbiology : Journal of Microbiology
TOP