Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "anti-viral activity"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Inhibitory effects of bee venom and its components against viruses in vitro and in vivo
Md Bashir Uddin , Byeong-Hoon Lee , Chamilani Nikapitiya , Jae-Hoon Kim , Tae-Hwan Kim , Hyun-Cheol Lee , Choul Goo Kim , Jong-Soo Lee , Chul-Joong Kim
J. Microbiol. 2016;54(12):853-866.   Published online November 26, 2016
DOI: https://doi.org/10.1007/s12275-016-6376-1
  • 47 View
  • 0 Download
  • 81 Crossref
AbstractAbstract
Bee venom (BV) from honey bee (Apis Melifera L.) contains at least 18 pharmacologically active components including melittin (MLT), phospholipase A2 (PLA2), and apamin etc. BV is safe for human treatments dose dependently and proven to possess different healing properties including antibacterial and antiparasitidal properties. Nevertheless, antiviral properties of BV have not well investigated. Hence, we identified the potential antiviral properties of BV and its component against a broad panel of viruses. Co-incubation of non-cytotoxic amounts of BV and MLT, the main component of BV, significantly inhibited the replication of enveloped viruses such as Influenza A virus (PR8), Vesicular Stomatitis Virus (VSV), Respiratory Syncytial Virus (RSV), and Herpes Simplex Virus (HSV). Additionally, BV and MLT also inhibited the replication of non-enveloped viruses such as Enterovirus-71 (EV-71) and Coxsackie Virus (H3). Such antiviral properties were mainly explained by virucidal mechanism. Moreover, MLT protected mice which were challenged with lethal doses of pathogenic influenza A H1N1 viruses. Therefore, these results provides the evidence that BV and MLT could be a potential source as a promising antiviral agent, especially to develop as a broad spectrum antiviral agent.

Citations

Citations to this article as recorded by  
  • CAPRİPOXVİRUSLARIN HAYVAN SAĞLIĞI ÜZERİNDEKİ ETKİLERİ VE GÜNCEL ANTİVİRAL YAKLAŞIMLAR
    Sibel Şurak, Zeynep Akkutay Yoldar
    Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni.2024; 15(2): 86.     CrossRef
  • Mechanisms of Action, Biological Characteristics, and Future Prospects: A Review of Antimicrobial Peptides (A Review)
    X. Ma, Z. Chen, M. Long
    Applied Biochemistry and Microbiology.2024; 60(6): 1044.     CrossRef
  • Structural characterization and bioactivity profiling of the fungal peptaibiotic tolypin reveal protective effects against influenza viruses
    Johanna Eichberg, Markus Oberpaul, Christoph Hartwig, Andrea Helga Geißler, Carsten Culmsee, Andreas Vilcinskas, Eva Böttcher‐Friebertshäuser, Hans Brückner, Thomas Degenkolb, Kornelia Hardes
    Archiv der Pharmazie.2024;[Epub]     CrossRef
  • Antiviral Activities of Mastoparan-L-Derived Peptides against Human Alphaherpesvirus 1
    Liana Costa Pereira Vilas Boas, Danieli Fernanda Buccini, Rhayfa Lorrayne Araújo Berlanda, Bruno de Paula Oliveira Santos, Mariana Rocha Maximiano, Luciano Morais Lião, Sónia Gonçalves, Nuno C. Santos, Octávio Luiz Franco
    Viruses.2024; 16(6): 948.     CrossRef
  • Anti-Herpes Simplex Virus and Anti-Inflammatory Activities of the Melittin Peptides Derived from Apis mellifera and Apis florea Venom
    Pichet Praphawilai, Thida Kaewkod, Sureeporn Suriyaprom, Aussara Panya, Terd Disayathanoowat, Yingmanee Tragoolpua
    Insects.2024; 15(2): 109.     CrossRef
  • Melittin as a therapeutic agent for rheumatoid arthritis: mechanistic insights, advanced delivery systems, and future perspectives
    Ashutosh Pareek, Khushbu Mehlawat, Kritika Tripathi, Aaushi Pareek, Simran Chaudhary, Yashumati Ratan, Vasso Apostolopoulos, Anil Chuturgoon
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • A Journey Along the Boulevard of Bioactive Compounds from Natural Sources, with Cosmetic and Pharmaceutical Potential: Bee Venom, Cobra Venom, Ficus carica
    Monica Dinu, Carmen Galea, Ana Maria Chirilov, Alin Laurențiu Tatu, Lawrence Chukwudi Nwabudike, Olimpia Dumitriu Buzia, Claudia Simona Stefan
    Cosmetics.2024; 11(6): 195.     CrossRef
  • Bee-Inspired Healing: Apitherapy in Veterinary Medicine for Maintenance and Improvement Animal Health and Well-Being
    Jevrosima Stevanović, Uroš Glavinić, Marko Ristanić, Vladimira Erjavec, Barış Denk, Slobodan Dolašević, Zoran Stanimirović
    Pharmaceuticals.2024; 17(8): 1050.     CrossRef
  • The current landscape of the antimicrobial peptide melittin and its therapeutic potential
    Hai-Qian Zhang, Chengbiao Sun, Na Xu, Wensen Liu
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • Immunomodulatory activities and biomedical applications of melittin and its recent advances
    Zohreh Jafari, Sahar Sadeghi, Mahsa Mirzarazi Dehaghi, Ashkan Bigham, Shokouh Honarmand, Afsaneh Tavasoli, Mostafa Haji Molla Hoseini, Rajender S. Varma
    Archiv der Pharmazie.2024;[Epub]     CrossRef
  • Bee venom and melittin: Potent key enzyme inhibitors with promising therapeutic potential
    Bayram Alparslan, Murat Şentürk, Cengiz Erkan
    Toxicon.2024; 252: 108164.     CrossRef
  • Expression profiles and phylogenetic properties of venom gland‐specific viruses in some aculeate bees and wasps
    Kyungjae Andrew Yoon, Woo Jin Kim, Hee Jong Shin, Si Hyeock Lee
    Entomological Research.2024;[Epub]     CrossRef
  • DOĞANIN ŞİFASI: ARI ZEHRİNİN SAĞLIK ÜZERİNDEKİ ETKİLERİ VE UYGULAMALARI
    Sibel Kaymak, Nilüfer Vural, Oğuz Yüce, Salih Mollahaliloğlu
    Uludağ Arıcılık Dergisi.2024; 24(2): 386.     CrossRef
  • Plantar warts successfully treated with bee venom: A case report
    Min Hee Kim
    EXPLORE.2024; 20(2): 231.     CrossRef
  • Bee venom: apitherapy and more
    Maya JODIDIO, Robert A. SCHWARTZ
    Italian Journal of Dermatology and Venereology.2024;[Epub]     CrossRef
  • Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review
    Kadry M. Sadek, Naira A. Shib, Ehab S. Taher, Fatema Rashed, Mustafa Shukry, Gamal A. Atia, Noha Taymour, Mohammad El-Nablaway, Ateya M. Ibrahim, Mahmoud M. Ramadan, Afaf Abdelkader, Mohamed Abdo, Ilinca Imbrea, Elena Pet, Lashin S. Ali, Ahmed Abdeen
    Frontiers in Pharmacology.2024;[Epub]     CrossRef
  • Cytotoxic and apoptotic effectiveness of Cypriot honeybee (Apis mellifera cypria) venom on various cancer cells
    Ayşe Nalbantsoy, Ekin Varol, Ayşe Dila Çaglar, Banu Yücel
    Turkish Journal of Biochemistry.2024; 49(3): 446.     CrossRef
  • Orchestrating AMPK/mTOR signaling to initiate melittin-induced mitophagy: A neuroprotective strategy against Parkinson's disease
    Mingran Chen, Xue Wang, Shuangyan Bao, Dexiao Wang, Jie Zhao, Qian Wang, Chaojie Liu, Haiong Zhao, Chenggui Zhang
    International Journal of Biological Macromolecules.2024; 281: 136119.     CrossRef
  • Insights into enterovirus a-71 antiviral development: from natural sources to synthetic nanoparticles
    Shiraz Feferbaum-Leite, Igor Andrade Santos, Victória Riquena Grosche, Gislaine Celestino Dutra da Silva, Ana Carolina Gomes Jardim
    Archives of Microbiology.2023;[Epub]     CrossRef
  • Can Bee Venom Be Used as Anticancer Agent in Modern Medicine?
    Agata Małek, Maciej Strzemski, Joanna Kurzepa, Jacek Kurzepa
    Cancers.2023; 15(14): 3714.     CrossRef
  • Bee Venom Induces the Interaction between Phosphorylated Histone Variant, H2AX, and the Intracellular Site of beta‐Actin in Liver and Breast Cancer Cells
    Sinan Tetikoğlu, Selcen Çelik‐Uzuner
    Chemistry & Biodiversity.2023;[Epub]     CrossRef
  • In-Ovo injection of melittin into Alexandria chicken eggs: a way for early immune acceleration
    Mohamed H. Khalil, Saber S. Hassan, Farid N. K. Soliman, Mohamed I. Hassan
    Animal Biotechnology.2023; : 1.     CrossRef
  • Determination of the Effects of Bee Venom on Triple Negative Breast Cancer Cells in Vitro
    Sedat Sevin, Asuman Deveci Ozkan, Hidayet Tutun, Ibrahim Kivrak, Ozge Turna, Gamze Guney Eskiler
    Chemistry & Biodiversity.2023;[Epub]     CrossRef
  • Experimental envenomation with honeybee venom melittin and phospholipase A2 induced multiple ultrastructural changes in adrenocortical mitochondria
    Diana Harfmann, Adrian Florea
    Toxicon.2023; 229: 107136.     CrossRef
  • Bee Venom and Its Two Main Components—Melittin and Phospholipase A2—As Promising Antiviral Drug Candidates
    Carole Yaacoub, Rim Wehbe, Rabih Roufayel, Ziad Fajloun, Bruno Coutard
    Pathogens.2023; 12(11): 1354.     CrossRef
  • Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria
    Mohamed E. Elnosary, Hesham A. Aboelmagd, Manal A. Habaka, Salem R. Salem, Mehrez E. El-Naggar
    International Journal of Biological Macromolecules.2023; 224: 871.     CrossRef
  • Melittin-Related Peptides Interfere with Sandfly Fever Naples Virus Infection by Interacting with Heparan Sulphate
    Annalisa Chianese, Carla Zannella, Francesca Palma, Laura Di Clemente, Alessandra Monti, Nunzianna Doti, Anna De Filippis, Massimiliano Galdiero
    Microorganisms.2023; 11(10): 2446.     CrossRef
  • Therapeutic Use of Bee Venom and Potential Applications in Veterinary Medicine
    Roberto Bava, Fabio Castagna, Vincenzo Musella, Carmine Lupia, Ernesto Palma, Domenico Britti
    Veterinary Sciences.2023; 10(2): 119.     CrossRef
  • Antiviral Attributes of Bee Venom as a Possible Therapeutic Approach Against SARS-CoV-2 Infection
    Soumik Goswami, Jayita Pal Chowdhury
    Future Virology.2023; 18(15): 1021.     CrossRef
  • Antimicrobial Activity of Apis mellifera Bee Venom Collected in Northern Peru
    Orlando Pérez-Delgado, Abraham Omar Espinoza-Culupú, Elmer López-López
    Antibiotics.2023; 12(4): 779.     CrossRef
  • General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses
    Syeda Tasmia Asma, Otilia Bobiş, Victoriţa Bonta, Ulas Acaroz, Syed Rizwan Ali Shah, Fatih Ramazan Istanbullugil, Damla Arslan-Acaroz
    Nutrients.2022; 14(17): 3579.     CrossRef
  • THERAPEUTICS APPROACHES OF INVERTEBRATE ANIMAL TOXINS: A REVIEW
    SIMRAN SHARMA, RAVI KANT UPADHYAY
    International Journal of Pharmacy and Pharmaceutical Sciences.2022; : 8.     CrossRef
  • In Silico Analysis of Honeybee Venom Protein Interaction with Wild Type and Mutant (A82V + P375S) Ebola Virus Spike Protein
    Muhammad Muzammal, Muzammil Khan, Mohammed Mohaini, Abdulkhaliq Alsalman, Maitham Hawaj, Arshad Farid
    Biologics.2022; 2(1): 45.     CrossRef
  • Antiviral Effects of Animal Toxins: Is There a Way to Drugs?
    Yuri Utkin, Andrei Siniavin, Igor Kasheverov, Victor Tsetlin
    International Journal of Molecular Sciences.2022; 23(7): 3634.     CrossRef
  • Antiviral Activity of Bee Products
    Theodoros Kontogiannis, Tilemachos G. Dimitriou, Nikos Asoutis Didaras, Dimitris Mossialos
    Current Pharmaceutical Design.2022; 28(35): 2867.     CrossRef
  • Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review
    William Gustavo Lima, César Quadros Maia, Thayane Santos de Carvalho, Gustavo Oliveira Leite, Júlio César Moreira Brito, Isabella Piassi Dias Godói, Maria Elena de Lima, Jaqueline Maria Siqueira Ferreira
    Archives of Virology.2022; 167(9): 1763.     CrossRef
  • Reptiles as Promising Sources of Medicinal Natural Products for Cancer Therapeutic Drugs
    Soon Yong Park, Hyeongrok Choi, Jin Woong Chung
    Pharmaceutics.2022; 14(4): 874.     CrossRef
  • Antiviral Potential of Natural Resources against Influenza Virus Infections
    Johanna Eichberg, Elena Maiworm, Markus Oberpaul, Volker Czudai-Matwich, Tim Lüddecke, Andreas Vilcinskas, Kornelia Hardes
    Viruses.2022; 14(11): 2452.     CrossRef
  • Effect of honey bee venom on the histological changes of testes and hormonal disturbance in diabetic mice
    Sattar J. J. AL-Shaeli, Talal Jabal Hussen, Ali M. Ethaeb
    Veterinary World.2022; : 2357.     CrossRef
  • Gramicidin S and melittin: potential anti-viral therapeutic peptides to treat SARS-CoV-2 infection
    Mohammed Ghalib Enayathullah, Yash Parekh, Sarena Banu, Sushma Ram, Ramakrishnan Nagaraj, Bokara Kiran Kumar, Mohammed M. Idris
    Scientific Reports.2022;[Epub]     CrossRef
  • Anti-fungal Effects and Mechanisms of Action of Wasp Venom-Derived Peptide Mastoparan-VT1 Against Candida albicans
    Mojtaba Memariani, Hamed Memariani, Zahra Poursafavi, Zohre Baseri
    International Journal of Peptide Research and Therapeutics.2022;[Epub]     CrossRef
  • Melittin-Based Nano-Delivery Systems for Cancer Therapy
    Anqi Wang, Yuan Zheng, Wanxin Zhu, Liuxin Yang, Yang Yang, Jinliang Peng
    Biomolecules.2022; 12(1): 118.     CrossRef
  • New Insights into Potential Beneficial Effects of Bioactive Compounds of Bee Products in Boosting Immunity to Fight COVID-19 Pandemic: Focus on Zinc and Polyphenols
    Meryem Bakour, Hassan Laaroussi, Driss Ousaaid, Asmae El Ghouizi, Imane Es-safi, Hamza Mechchate, Badiaa Lyoussi
    Nutrients.2022; 14(5): 942.     CrossRef
  • COVID-19 pandemic: impacts on bees, beekeeping, and potential role of bee products as antiviral agents and immune enhancers
    Youssef A. Attia, Gianpaolo M. Giorgio, Nicola F. Addeo, Khalid A. Asiry, Giovanni Piccolo, Antonino Nizza, Carmelo Di Meo, Naimah A. Alanazi, Adel D. Al-qurashi, Mohamed E. Abd El-Hack, Asmaa F. Khafaga, Fulvia Bovera
    Environmental Science and Pollution Research.2022; 29(7): 9592.     CrossRef
  • The Broad-Spectrum Antiviral Potential of the Amphibian Peptide AR-23
    Annalisa Chianese, Carla Zannella, Alessandra Monti, Anna De Filippis, Nunzianna Doti, Gianluigi Franci, Massimiliano Galdiero
    International Journal of Molecular Sciences.2022; 23(2): 883.     CrossRef
  • Pharmaceutical Prospects of Bee Products: Special Focus on Anticancer, Antibacterial, Antiviral, and Antiparasitic Properties
    Firzan Nainu, Ayu Masyita, Muh. Akbar Bahar, Muhammad Raihan, Shajuthi Rahman Prova, Saikat Mitra, Talha Bin Emran, Jesus Simal-Gandara
    Antibiotics.2021; 10(7): 822.     CrossRef
  • Bee Venom: From Venom to Drug
    Abdelwahab Khalil, Basem H. Elesawy, Tarek M. Ali, Osama M. Ahmed
    Molecules.2021; 26(16): 4941.     CrossRef
  • The Responsiveness of Bee Venom Phospholipase A2 on Regulatory T Cells Correlates with the CD11c+CD206+Population in Human Peripheral Blood Mononuclear Cells
    Heejin Jo, Hyunjung Baek, Seon-Young Park, Bonhyuk Goo, Woo-Sang Jung, Hyunsu Bae, Sang-Soo Nam
    Toxins.2021; 13(10): 717.     CrossRef
  • Antiviral peptides against Enterovirus A71 causing hand, foot and mouth disease
    Salima Lalani, Lai Ti Gew, Chit Laa Poh
    Peptides.2021; 136: 170443.     CrossRef
  • Mechanism of antimicrobial activity of honeybee (Apis mellifera) venom on Gram-negative bacteria: Escherichia coli and Pseudomonas spp.
    Izlem Haktanir, Maria Masoura, Fani Th Mantzouridou, Konstantinos Gkatzionis
    AMB Express.2021;[Epub]     CrossRef
  • Applications and evolution of melittin, the quintessential membrane active peptide
    Shantanu Guha, Ryan P. Ferrie, Jenisha Ghimire, Cristina R. Ventura, Eric Wu, Leisheng Sun, Sarah Y. Kim, Gregory R. Wiedman, Kalina Hristova, Wimley C. Wimley
    Biochemical Pharmacology.2021; 193: 114769.     CrossRef
  • Naturally-derived targeted therapy for wound healing: Beyond classical strategies
    Saeed El-Ashram, Lamia M. El-Samad, Amal A. Basha, Abeer El Wakil
    Pharmacological Research.2021; 170: 105749.     CrossRef
  • Antimicrobial peptides as promising drugs for treatment of primary viral pneumonia
    M. Yu. Shchelkanov, A. V. Cybulsky, V. G. Dedkov, I. V. Galkina, V. V. Maleev
    Russian Journal of Infection and Immunity.2021; 11(5): 837.     CrossRef
  • Repurposing of Sitagliptin- Melittin Optimized Nanoformula against SARS-CoV-2; Antiviral Screening and Molecular Docking Studies
    Mohammed Al-Rabia, Nabil Alhakamy, Osama Ahmed, Khalid Eljaaly, Ahmed Alaofi, Ahmed Mostafa, Hani Asfour, Ahmed Aldarmahi, Khaled Darwish, Tarek Ibrahim, Usama Fahmy
    Pharmaceutics.2021; 13(3): 307.     CrossRef
  • Fighting against the second wave of COVID-19: Can honeybee products help protect against the pandemic?
    Yahya Al Naggar, John P. Giesy, Mohamed M. Abdel-Daim, Mohammad Javed Ansari, Saad N. Al-Kahtani, Galal Yahya
    Saudi Journal of Biological Sciences.2021; 28(3): 1519.     CrossRef
  • Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID‐19 (SARS‐CoV‐2)
    William G. Lima, Júlio C. M. Brito, Waleska S. da Cruz Nizer
    Phytotherapy Research.2021; 35(2): 743.     CrossRef
  • Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity
    Ran Ye, Yuan Zheng, Yang Chen, Xiaohui Wei, Sanyuan Shi, Yuetan Chen, Wanxin Zhu, Anqi Wang, Liuxin Yang, Yuhong Xu, Jinliang Peng
    ACS Applied Materials & Interfaces.2021; 13(47): 55902.     CrossRef
  • Cytotoxic Effect of Bee (A. mellifera) Venom on Cancer Cell Lines
    Sima Khalilifard Borojeni, Hossein Zolfagharian, Mahdi Babaie, Iraj Javadi
    Journal of Pharmacopuncture.2020; 23(4): 212.     CrossRef
  • Bee Venom in Wound Healing
    Anna Kurek-Górecka, Katarzyna Komosinska-Vassev, Anna Rzepecka-Stojko, Paweł Olczyk
    Molecules.2020; 26(1): 148.     CrossRef
  • Potent virucidal activity of honeybee “Apis mellifera” venom against Hepatitis C Virus
    Moustafa Sarhan, Alaa M.H. El-Bitar, Hak Hotta
    Toxicon.2020; 188: 55.     CrossRef
  • Bee Venom—A Potential Complementary Medicine Candidate for SARS-CoV-2 Infections
    Keneth Iceland Kasozi, Gniewko Niedbała, Mohammed Alqarni, Gerald Zirintunda, Fred Ssempijja, Simon Peter Musinguzi, Ibe Michael Usman, Kevin Matama, Helal F. Hetta, Ngala Elvis Mbiydzenyuy, Gaber El-Saber Batiha, Amany Magdy Beshbishy, Susan Christina We
    Frontiers in Public Health.2020;[Epub]     CrossRef
  • Membrane Active Peptides Remove Surface Adsorbed Protein Corona From Extracellular Vesicles of Red Blood Cells
    Priyanka Singh, Imola Cs. Szigyártó, Maria Ricci, Ferenc Zsila, Tünde Juhász, Judith Mihály, Szilvia Bősze, Éva Bulyáki, József Kardos, Diána Kitka, Zoltán Varga, Tamás Beke-Somfai
    Frontiers in Chemistry.2020;[Epub]     CrossRef
  • Antimicrobial Properties of Apis mellifera’s Bee Venom
    Hesham El-Seedi, Aida Abd El-Wahed, Nermeen Yosri, Syed Ghulam Musharraf, Lei Chen, Moustafa Moustafa, Xiaobo Zou, Saleh Al-Mousawi, Zhiming Guo, Alfi Khatib, Shaden Khalifa
    Toxins.2020; 12(7): 451.     CrossRef
  • Linear and dendrimeric antiviral peptides: design, chemical synthesis and activity against human respiratory syncytial virus
    Ksenia V. Kozhikhova, Igor P. Shilovskiy, Artem A. Shatilov, Anastasiia V. Timofeeva, Evgeny A. Turetskiy, Liudmila I. Vishniakova, Aleksandr A. Nikolskii, Ekaterina D. Barvinskaya, Subramani Karthikeyan, Valeriy V. Smirnov, Dmitriy A. Kudlay, Sergey M. A
    Journal of Materials Chemistry B.2020; 8(13): 2607.     CrossRef
  • Bee Products in Dermatology and Skin Care
    Anna Kurek-Górecka, Michał Górecki, Anna Rzepecka-Stojko, Radosław Balwierz, Jerzy Stojko
    Molecules.2020; 25(3): 556.     CrossRef
  • Melittin: a venom-derived peptide with promising anti-viral properties
    Hamed Memariani, Mojtaba Memariani, Hamideh Moravvej, Mohammad Shahidi-Dadras
    European Journal of Clinical Microbiology & Infectious Diseases.2020; 39(1): 5.     CrossRef
  • Beekeepers who tolerate bee stings are not protected against SARS-CoV-2 infections
    Heidrun Männle, Jutta Hübner, Karsten Münstedt
    Toxicon.2020; 187: 279.     CrossRef
  • Antimicrobials from Venomous Animals: An Overview
    Tania Yacoub, Mohamad Rima, Marc Karam, Jean-Marc Sabatier, Ziad Fajloun
    Molecules.2020; 25(10): 2402.     CrossRef
  • Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications
    Maria Carpena, Bernabe Nuñez-Estevez, Anton Soria-Lopez, Jesus Simal-Gandara
    Nutrients.2020; 12(11): 3360.     CrossRef
  • Development of an antibacterial surface with a self-defensive and pH-responsive function
    Jing Zhang, Wenhe Zhu, Benkai Xin, Sue Lin, Libo Jin, Huiyan Wang
    Biomaterials Science.2019; 7(9): 3795.     CrossRef
  • Bee Venom: Overview of Main Compounds and Bioactivities for Therapeutic Interests
    Rim Wehbe, Jacinthe Frangieh, Mohamad Rima, Dany El Obeid, Jean-Marc Sabatier, Ziad Fajloun
    Molecules.2019; 24(16): 2997.     CrossRef
  • Bee Venom and Its Peptide Component Melittin Suppress Growth and Migration of Melanoma Cells via Inhibition of PI3K/AKT/mTOR and MAPK Pathways
    Haet Nim Lim, Seung Bae Baek, Hye Jin Jung
    Molecules.2019; 24(5): 929.     CrossRef
  • The Unique Protein Composition of Honey Revealed by Comprehensive Proteomic Analysis: Allergens, Venom-like Proteins, Antibacterial Properties, Royal Jelly Proteins, Serine Proteases, and Their Inhibitors
    Tomas Erban, Elena Shcherbachenko, Pavel Talacko, Karel Harant
    Journal of Natural Products.2019; 82(5): 1217.     CrossRef
  • Bee products and the treatment of blister-like lesions around the mouth, skin and genitalia caused by herpes viruses—A systematic review
    Karsten Münstedt
    Complementary Therapies in Medicine.2019; 43: 81.     CrossRef
  • Prospects For the Use of Peptides against Respiratory Syncytial Virus
    I. P. Shilovskiy, S. M. Andreev, K. V. Kozhikhova, A. A. Nikolskii, M. R. Khaitov
    Molecular Biology.2019; 53(4): 484.     CrossRef
  • Use of Selected Carbon Nanoparticles as Melittin Carriers for MCF-7 and MDA-MB-231 Human Breast Cancer Cells
    Karolina Daniluk, Marta Kutwin, Marta Grodzik, Mateusz Wierzbicki, Barbara Strojny, Jarosław Szczepaniak, Jaśmina Bałaban, Malwina Sosnowska, Andre Chwalibog, Ewa Sawosz, Sławomir Jaworski
    Materials.2019; 13(1): 90.     CrossRef
  • Potential Therapeutic Applications of Bee Venom on Skin Disease and Its Mechanisms: A Literature Review
    Haejoong Kim, Soo-Yeon Park, Gihyun Lee
    Toxins.2019; 11(7): 374.     CrossRef
  • An overview of the bioactive compounds, therapeutic properties and toxic effects of apitoxin
    Ananias Pascoal, Maria Manuela Estevinho, Altino Branco Choupina, Mário Sousa-Pimenta, Leticia M. Estevinho
    Food and Chemical Toxicology.2019; 134: 110864.     CrossRef
  • Hemin and bile pigments are the secondary structure regulators of intrinsically disordered antimicrobial peptides
    Ferenc Zsila, Tünde Juhász, Szilvia Bősze, Kata Horváti, Tamás Beke‐Somfai
    Chirality.2018; 30(2): 195.     CrossRef
  • Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi
    Kayla Socarras, Priyanka Theophilus, Jason Torres, Khusali Gupta, Eva Sapi
    Antibiotics.2017; 6(4): 31.     CrossRef
  • Production of Antibodies in Chick by Bees Venom
    Mariyum Naz Gondal
    SSRN Electronic Journal .2017;[Epub]     CrossRef
Research Support, Non-U.S. Gov't
Antiviral Activities of Flavonoids Isolated from the Bark of Rhus verniciflua Stokes against Fish Pathogenic Viruses In Vitro
So Young Kang , Ji-Young Kang , Myung-Joo Oh
J. Microbiol. 2012;50(2):293-300.   Published online April 27, 2012
DOI: https://doi.org/10.1007/s12275-012-2068-7
  • 30 View
  • 0 Download
  • 91 Scopus
AbstractAbstract
An 80% methanolic extract of Rhus verniciflua Stokes bark showed significant anti-viral activity against fish pathogenic infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) in a cell-based assay measuring virus-induced cytopathic effect (CPE). Activity-guided fractionation and isolation for the 80% methanolic extract of R. verniciflua yielded the most active ethyl acetate fraction, and methyl gallate (1) and four flavonoids: fustin (2), fisetin (3), butin (4) and sulfuretin (5). Among them, fisetin (3) exhibited high antiviral activities against both IHNV and VHSV showing EC50 values of 27.1 and 33.3 μM with selective indices (SI = CC50/EC50) more than 15, respectively. Fustin (2) and sulfuretin (5) displayed significant antiviral activities showing EC50 values of 91.2– 197.3 μM against IHNV and VHSV. In addition, the antiviral activity of fisetin against IHNV and VHSV occurred up to 5 hr post-infection and was not associated with direct virucidal effects in a timed addition study using a plaque reduction assay. These results suggested that the bark of R. verniciflua and isolated flavonoids have significant anti-viral activity against IHNV and VHSV, and also have potential to be used as anti-viral therapeutics against fish viral diseases.

Journal of Microbiology : Journal of Microbiology
TOP