Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "anticancer therapy"
Filter
Filter
Article category
Keywords
Publication year
Reviews
[MINIREVIEW]Regulation of gene expression by protein lysine acetylation in Salmonella
Hyojeong Koo , Shinae Park , Min-Kyu Kwak , Jung-Shin Lee
J. Microbiol. 2020;58(12):979-987.   Published online November 17, 2020
DOI: https://doi.org/10.1007/s12275-020-0483-8
  • 49 View
  • 0 Download
  • 14 Web of Science
  • 13 Crossref
AbstractAbstract
Protein lysine acetylation influences many physiological functions, such as gene regulation, metabolism, and disease in eukaryotes. Although little is known about the role of lysine acetylation in bacteria, several reports have proposed its importance in various cellular processes. Here, we discussed the function of the protein lysine acetylation and the post-translational modifications (PTMs) of histone-like proteins in bacteria focusing on Salmonella pathogenicity. The protein lysine residue in Salmonella is acetylated by the Pat-mediated enzymatic pathway or by the acetyl phosphate-mediated non-enzymatic pathway. In Salmonella, the acetylation of lysine 102 and lysine 201 on PhoP inhibits its protein activity and DNAbinding, respectively. Lysine acetylation of the transcriptional regulator, HilD, also inhibits pathogenic gene expression. Moreover, it has been reported that the protein acetylation patterns significantly differ in the drug-resistant and -sensitive Salmonella strains. In addition, nucleoid-associated proteins such as histone-like nucleoid structuring protein (H-NS) are critical for the gene silencing in bacteria, and PTMs in H-NS also affect the gene expression. In this review, we suggest that protein lysine acetylation and the post-translational modifications of H-NS are important factors in understanding the regulation of gene expression responsible for pathogenicity in Salmonella.

Citations

Citations to this article as recorded by  
  • Bacterial protein acetylation: mechanisms, functions, and methods for study
    Jocelin Rizo, Sergio Encarnación-Guevara
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Acetyl-proteome profiling revealed the role of lysine acetylation in erythromycin resistance of Staphylococcus aureus
    Miao Feng, Xiaoyu Yi, Yanling Feng, Feng He, Zonghui Xiao, Hailan Yao
    Heliyon.2024; 10(15): e35326.     CrossRef
  • Short-chain fatty acids in breast milk and their relationship with the infant gut microbiota
    Menglu Xi, Yalu Yan, Sufang Duan, Ting Li, Ignatius Man-Yau Szeto, Ai Zhao
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of Bacillus altitudinis to Salt Stress
    Xujian Li, Shanshan Dai, Shanshan Sun, Dongying Zhao, Hui Li, Junyi Zhang, Jie Ma, Binghai Du, Yanqin Ding
    Journal of Proteome Research.2024;[Epub]     CrossRef
  • Acetylomics reveals an extensive acetylation diversity within Pseudomonas aeruginosa
    Nand Broeckaert, Hannelore Longin, Hanne Hendrix, Jeroen De Smet, Mirita Franz-Wachtel, Boris Maček, Vera van Noort, Rob Lavigne
    microLife.2024;[Epub]     CrossRef
  • Lysine acetylation regulates the AT-rich DNA possession ability of H-NS
    Yabo Liu, Mengqing Zhou, Yifan Bu, Liang Qin, Yuanxing Zhang, Shuai Shao, Qiyao Wang
    Nucleic Acids Research.2024; 52(4): 1645.     CrossRef
  • Acetylation of K188 and K192 inhibits the DNA-binding ability of NarL to regulate Salmonella virulence
    Liu-Qing Zhang, Yi-Lin Shen, Bang-Ce Ye, Ying Zhou, Christopher A. Elkins
    Applied and Environmental Microbiology.2023;[Epub]     CrossRef
  • Acetylome and Succinylome Profiling of Edwardsiella tarda Reveals Key Roles of Both Lysine Acylations in Bacterial Antibiotic Resistance
    Yuying Fu, Lishan Zhang, Huanhuan Song, Junyan Liao, Li Lin, Wenjia Jiang, Xiaoyun Wu, Guibin Wang
    Antibiotics.2022; 11(7): 841.     CrossRef
  • Pat- and Pta-mediated protein acetylation is required for horizontally-acquired virulence gene expression in Salmonella Typhimurium
    Hyojeong Koo, Eunna Choi, Shinae Park, Eun-Jin Lee, Jung-Shin Lee
    Journal of Microbiology.2022; 60(8): 823.     CrossRef
  • Acetylation of CspC Controls the Las Quorum-Sensing System through Translational Regulation of rsaL in Pseudomonas aeruginosa
    Shouyi Li, Xuetao Gong, Liwen Yin, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Un-Hwan Ha, Weihui Wu, Pierre Cornelis, Gerald B. Pier
    mBio.2022;[Epub]     CrossRef
  • Trans-acting regulators of ribonuclease activity
    Jaejin Lee, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(4): 341.     CrossRef
  • Acetylation of the CspA family protein CspC controls the type III secretion system through translational regulation ofexsAinPseudomonas aeruginosa
    Shouyi Li, Yuding Weng, Xiaoxiao Li, Zhuo Yue, Zhouyi Chai, Xinxin Zhang, Xuetao Gong, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Weihui Wu
    Nucleic Acids Research.2021; 49(12): 6756.     CrossRef
  • Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella—A Review
    Michał Wójcicki, Olga Świder, Kamila J. Daniluk, Paulina Średnicka, Monika Akimowicz, Marek Ł. Roszko, Barbara Sokołowska, Edyta Juszczuk-Kubiak
    Pathogens.2021; 10(7): 801.     CrossRef
MINIREVIEW] Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy
Ji Eun Choi , Woo-Hyun Chung
J. Microbiol. 2019;57(1):9-17.   Published online December 29, 2018
DOI: https://doi.org/10.1007/s12275-019-8475-2
  • 52 View
  • 0 Download
  • 7 Web of Science
  • 6 Crossref
AbstractAbstract
Synthetic lethality is an extreme form of negative genetic epistasis that arises when a combination of functional deficiency in two or more genes results in cell death, whereas none of the single genetic perturbations are lethal by themselves. This unconventional genetic interaction is a modification of the concept of essentiality that can be exploited for the purpose of targeted cancer therapy. The yeast Saccharomyces cerevisiae has been pivotally used for early large-scale synthetic lethal screens due to its experimental advantages, but recent advances in gene silencing technology have now made direct high-throughput analysis possible in higher organisms. Identification of tumor-specific alterations and characterization of the mechanistic principles underlying synthetic lethal interaction are the key to applying synthetic lethality to clinical cancer treatment by enabling genome-driven oncological research. Here, we provide emerging ideas on the synthetic lethal interactions in budding yeast, particularly between cellular processes responsible for oxidative stress response and DNA damage repair, and discuss how they can be appropriately utilized for context-dependent cancer therapeutics.

Citations

Citations to this article as recorded by  
  • CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference
    Yuyang Dou, Yujie Ren, Xinmiao Zhao, Jiaming Jin, Shizheng Xiong, Lulu Luo, Xinru Xu, Xueni Yang, Jiafeng Yu, Li Guo, Tingming Liang
    Computers in Biology and Medicine.2024; 170: 108066.     CrossRef
  • ML216-Induced BLM Helicase Inhibition Sensitizes PCa Cells to the DNA-Crosslinking Agent Cisplatin
    Xiao-Yan Ma, Jia-Fu Zhao, Yong Ruan, Wang-Ming Zhang, Lun-Qing Zhang, Zheng-Dong Cai, Hou-Qiang Xu
    Molecules.2022; 27(24): 8790.     CrossRef
  • Clinical significance of chromosomal integrity in gastric cancers
    Rukui Zhang, Zhaorui Liu, Xusheng Chang, Yuan Gao, Huan Han, Xiaona Liu, Hui Cai, Qiqing Fu, Lei Liu, Kai Yin
    The International Journal of Biological Markers.2022; 37(3): 296.     CrossRef
  • Functional interplay between the oxidative stress response and DNA damage checkpoint signaling for genome maintenance in aerobic organisms
    Ji Eun Choi, Woo-Hyun Chung
    Journal of Microbiology.2020; 58(2): 81.     CrossRef
  • Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants
    Jenna E. Gallegos, Neil R. Adames, Mark F. Rogers, Pavel Kraikivski, Aubrey Ibele, Kevin Nurzynski-Loth, Eric Kudlow, T. M. Murali, John J. Tyson, Jean Peccoud
    npj Systems Biology and Applications.2020;[Epub]     CrossRef
  • DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae
    Michael G. Mfarej, Robert V. Skibbens, Marco Muzi-Falconi
    PLOS ONE.2020; 15(12): e0242968.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP