Search
- Page Path
-
HOME
> Search
Journal Articles
- Fleagrass (Adenosma buchneroides Bonati) Acts as a Fungicide Against Candida albicans by Damaging Its Cell Wall.
-
Youwei Wu, Hongxia Zhang, Hongjie Chen, Zhizhi Du, Qin Li, Ruirui Wang
-
J. Microbiol. 2024;62(8):661-670. Published online July 3, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00146-9
-
-
Abstract
- Fleagrass, a herb known for its pleasant aroma, is widely used as a mosquito repellent, antibacterial agent, and for treating colds, reducing swelling, and alleviating pain. The antifungal effects of the essential oils of fleagrass and carvacrol against Candida albicans were investigated by evaluating the growth and the mycelial and biofilm development of C. albicans. Transmission electron microscopy was used to evaluate the integrity of the cell membrane and cell wall of C. albicans. Fleagrass exhibited high fungicidal activity against C. albicans at concentrations of 0.5% v/v (via the Ras1/cAMP/PKA pathway). Furthermore, transmission electron microscopy revealed damage to the cell wall and membrane after treatment with the essential oil, which was further confirmed by the increased levels of β-1,3-glucan and chitin in the cell wall. This study showed that fleagrass exerts good fungicidal and hyphal growth inhibition activity against C. albicans by disrupting its cell wall, and thus, fleagrass may be a potential antifungal drug.
- Antimicrobial Efficacy of Allium cepa and Zingiber officinale Against the Milk‑Borne Pathogen Listeria monocytogenes
-
Abirami Arasu , Nagaram Prabha , Durga Devi , Praveen Kumar Issac , Khaloud Mohammed Alarjani , Dunia A. Al Farraj , Reem A. Aljeidi , Dina S. Hussein , Magesh Mohan , Jehad Zuhair Tayyeb , Ajay Guru , Jesu Arockiaraj
-
J. Microbiol. 2023;61(11):993-1011. Published online December 4, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00086-w
-
-
Abstract
- Listeria monocytogenes is an important food-borne pathogen that causes listeriosis and has a high case fatality rate despite
its low incidence. Medicinal plants and their secondary metabolites have been identified as potential antibacterial substances,
serving as replacements for synthetic chemical compounds. The present studies emphasize two significant medicinal plants,
Allium cepa and Zingiber officinale, and their efficacy against L. monocytogenes. Firstly, a bacterial isolate was obtained
from milk and identified through morphology and biochemical reactions. The species of the isolate were further confirmed
through 16S rRNA analysis. Furthermore, polar solvents such as methanol and ethanol were used for the extraction of secondary
metabolites from A. cepa and Z. officinale. Crude phytochemical components were identified using phytochemical
tests, FTIR, and GC–MS. Moreover, the antibacterial activity of the crude extract and its various concentrations were tested
against L. monocytogenes. Among all, A. cepa in methanolic extracts showed significant inhibitory activity. Since, the A.
cepa for methanolic crude extract was used to perform autography to assess its bactericidal activity. Subsequently, molecular
docking was performed to determine the specific compound inhibition. The docking results revealed that four compounds
displayed strong binding affinity with the virulence factor Listeriolysin-O of L. monocytogenes. Based on the above results,
it can be concluded that the medicinal plant A. cepa has potential antibacterial effects against L. monocytogenes, particularly
targeting its virulence.
- Identification and Functional Analysis of Acyl‑Acyl Carrier Protein Δ9 Desaturase from Nannochloropsis oceanica
-
Ruigang Yang , Hui Wang , Lingyun Zhu , Lvyun Zhu , Tianzhong Liu , Dongyi Zhang
-
J. Microbiol. 2023;61(1):95-107. Published online January 31, 2023
-
DOI: https://doi.org/10.1007/s12275-022-00001-9
-
-
Abstract
- The oleaginous marine microalga Nannochloropsis oceanica strain IMET1 has attracted increasing attention as a promising
photosynthetic cell factory due to its unique excellent capacity to accumulate large amounts of triacylglycerols and eicosapentaenoic
acid. To complete the genomic annotation for genes in the fatty acid biosynthesis pathway of N. oceanica, we
conducted the present study to identify a novel candidate gene encoding the archetypical chloroplast stromal acyl-acyl carrier
protein Δ9 desaturase. The full-length cDNA was generated using rapid-amplification of cDNA ends, and the structure of
the coding region interrupted by four introns was determined. The RT-qPCR results demonstrated the upregulated transcriptional
abundance of this gene under nitrogen starvation condition. Fluorescence localization studies using EGFP-fused
protein revealed that the translated protein was localized in chloroplast stroma. The catalytic activity of the translated protein
was characterized by inducible expression in Escherichia coli and a mutant yeast strain BY4389, indicating its potential
desaturated capacity for palmitoyl-ACP (C16:0-ACP) and stearoyl-ACP (C18:0-ACP). Further functional complementation
assay using BY4839 on plate demonstrated that the expressed enzyme restored the biosynthesis of oleic acid. These results
support the desaturated activity of the expressed protein in chloroplast stroma to fulfill the biosynthesis and accumulation
of monounsaturated fatty acids in N. oceanica strain IMET1.
- Direct current exerts electricidal and bioelectric effects on Porphyromonas gingivalis biofilms partially via promoting oxidative stress and antibiotic transport
-
Peihui Zou , Peng Li , Jia Liu , Pei Cao , Qingxian Luan
-
J. Microbiol. 2022;60(1):70-78. Published online November 26, 2021
-
DOI: https://doi.org/10.1007/s12275-022-1238-5
-
-
21
View
-
0
Download
-
7
Citations
-
Abstract
- Low electric current can inhibit certain microbial biofilms and
enhance the efficacy of antimicrobials against them. This study
investigated the electricidal and bioelectric effects of direct
current (DC) against Porphyromonas gingivalis biofilms as
well as the underlying mechanisms. Here, we firstly showed
that DC significantly suppressed biofilm formation of P. gingivalis
in time- and intensity-dependent manners, and markedly
inhibited preformed P. gingivalis biofilms. Moreover,
DC enhanced the killing efficacy of metronidazole (MTZ) and
amoxicillin with clavulanate potassium (AMC) against the
biofilms. Notably, DC-treated biofilms displayed upregulated
intracellular ROS and expression of ROS related genes (sod,
feoB, and oxyR) as well as porin gene. Interestingly, DC-induced
killing of biofilms was partially reversed by ROS scavenger
N-dimethylthiourea (DMTU), and the synergistic effect
of DC with MTZ/AMC was weakened by small interfering
RNA of porin gene (si-Porin). In conclusion, DC can
exert electricidal and bioelectric effects against P. gingivalis
biofilms partially via promotion of oxidative stress and antibiotic
transport, which offers a promising approach for effective
management of periodontitis.
TOP