Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "antiviral"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
The Role of Extracellular Vesicles in Pandemic Viral Infections.
Woosung Shim, Anjae Lee, Jung-Hyun Lee
J. Microbiol. 2024;62(6):419-427.   Published online June 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00144-x
  • 15 View
  • 0 Download
AbstractAbstract
Extracellular vesicles (EVs), of diverse origin and content, are membranous structures secreted by a broad range of cell types. Recent advances in molecular biology have highlighted the pivotal role of EVs in mediating intercellular communication, facilitated by their ability to transport a diverse range of biomolecules, including proteins, lipids, DNA, RNA and metabolites. A striking feature of EVs is their ability to exert dual effects during viral infections, involving both proviral and antiviral effects. This review explores the dual roles of EVs, particularly in the context of pandemic viruses such as HIV-1 and SARS-CoV-2. On the one hand, EVs can enhance viral replication and exacerbate pathogenesis by transferring viral components to susceptible cells. On the other hand, they have intrinsic antiviral properties, including activation of immune responses and direct inhibition of viral infection. By exploring these contrasting functions, our review emphasizes the complexity of EV-mediated interactions in viral pathogenesis and highlights their potential as targets for therapeutic intervention. The insights obtained from investigating EVs in the context of HIV-1 and SARS-CoV-2 provide a deeper understanding of viral mechanisms and pathologies, and offer a new perspective on managing and mitigating the impact of these global health challenges.
Journal Articles
The Regulation of Phosphorus Release by Penicillium chrysogenum in Different Phosphate via the TCA Cycle and Mycelial Morphology
Liyan Wang , Da Tian , Xiaoru Zhang , Mingxue Han , Xiaohui Cheng , Xinxin Ye , Chaochun Zhang , Hongjian Gao , Zhen Li
J. Microbiol. 2023;61(8):765-775.   Published online September 4, 2023
DOI: https://doi.org/10.1007/s12275-023-00072-2
  • 18 View
  • 0 Download
AbstractAbstract
Phosphate-solubilizing fungi (PSF) efficiently dissolve insoluble phosphates through the production of organic acids. This study investigates the mechanisms of organic acid secretion by PSF, specifically Penicillium chrysogenum, under tricalcium phosphate ( Ca3(PO4)2, Ca–P) and ferric phosphate ( FePO4, Fe–P) conditions. Penicillium chrysogenum exhibited higher phosphorus (P) release efficiency from Ca-P (693.6 mg/L) than from Fe–P (162.6 mg/L). However, Fe–P significantly enhanced oxalic acid (1193.7 mg/L) and citric acid (227.7 mg/L) production by Penicillium chrysogenum compared with Ca–P (905.7 and 3.5 mg/L, respectively). The presence of Fe–P upregulated the expression of genes and activity of enzymes related to the tricarboxylic acid cycle, including pyruvate dehydrogenase and citrate synthase. Additionally, Fe–P upregulated the expression of chitinase and endoglucanase genes, inducing a transformation of Penicillium chrysogenum mycelial morphology from pellet to filamentous. The filamentous morphology exhibited higher efficiency in oxalic acid secretion and P release from Fe–P and Ca–P. Compared with pellet morphology, filamentous morphology enhanced P release capacity by > 40% and > 18% in Ca–P and Fe–P, respectively. This study explored the strategies employed by PSF to improve the dissolution of different insoluble phosphates.
Comparative study of the geographical spread of genogroup II porcine norovirus and human norovirus
Eung Seo Koo , Yong Seok Jeong
J. Microbiol. 2021;59(7):644-650.   Published online July 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1218-1
  • 14 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Livestock pigs and porcine norovirus could be candidate tools for future studies on the geographic isolation of norovirus. In this study, we provide the first evidence for geographic isolation of the host as a determinant of the distribution of subgenotypes of the porcine norovirus genogroup II (GII) genotype 11. Environmental water samples were collected from peri-urban streams and estuaries in South Korea between 2014 and 2020. In total, 488 GII region C sequences of norovirus open reading frame 2 were isolated. A total of 14 genotypes were detected, two of which (GII.11 and GII.18) corresponded to porcine norovirus. Five human norovirus genotypes (GII.2, GII.3, GII.4, GII.6, and GII.17) and one porcine norovirus genotype (GII.11) comprised the subgenotypes. Integrated analysis of seasonal and geographical factors revealed that the possibility of the co-emergence of different GII.11 subgenotypes in the same province was lower than that of human norovirus subgenotypes in the same province. Additional algorithms designed to eliminate potential biases further supported the estimated restricted geographical spread of the GII.11 subgenotypes. Fecal contamination source tracking revealed low detection rates of porcine norovirus in the absence of upstream pig farms. These results suggest that a one-sided viral transmission route, mainly dependent on indirect contact owing to the limited chance of direct contact between geographically separated livestock pig populations, may be responsible for the restricted geographical spread of the GII.11 subgenotypes.
Potency of Phlebia species of white rot fungi for the aerobic degradation, transformation and mineralization of lindane
Pengfei Xiao , Ryuichiro Kondo
J. Microbiol. 2020;58(5):395-404.   Published online March 28, 2020
DOI: https://doi.org/10.1007/s12275-020-9492-x
  • 23 View
  • 0 Download
  • 15 Citations
AbstractAbstract
The widespread use of the organochlorine insecticide lindane in the world has caused serious environmental problems. The main purpose of this paper is to investigate the potency of several Phlebia species of white rot fungi to degrade, transform and mineralize lindane, and to provide the feasibility of using white rot fungi for bioremediation at contaminated sites. Based on tolerance experiment results, Phlebia brevispora and Phlebia lindtneri had the highest tolerance to lindane and were screened by degradation tests. After 25 days of incubation, P. brevispora and P. lindtneri degraded 87.2 and 73.3% of lindane in low nitrogen medium and 75.8 and 64.9% of lindane in high nitrogen medium, respectively. Several unreported hydroxylation metabolites, including monohydroxylated, dehydroxylated, and trihydroxylated products, were detected and identified by GC/MS as metabolites of lindane. More than 10% of [14C] lindane was mineralized to 14CO2 by two fungi after 60 days of incubation, and the mineralization was slightly promoted by the addition of glucose. Additionally, the degradation of lindane and the formation of metabolites were efficiently inhibited by piperonyl butoxide, demonstrating that cytochrome P450 enzymes are involved in the fungal transformation of lindane. The present study showed that P. brevispora and P. lindtneri were efficient degraders of lindane; hence, they can be applied in the bioremediation process of lindane-contaminated sites.

Journal of Microbiology : Journal of Microbiology
TOP