Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "bac operon"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Development of a Novel D‑Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746
Kitisak Sansatchanon , Pipat Sudying , Peerada Promdonkoy , Yutthana Kingcha , Wonnop Visessanguan , Sutipa Tanapongpipat , Weerawat Runguphan , Kanokarn Kocharin
J. Microbiol. 2023;61(9):853-863.   Published online September 14, 2023
DOI: https://doi.org/10.1007/s12275-023-00077-x
  • 55 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains, Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism. We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic acid production, which reduced the product’s optical purity. We then used CRISPR/dCas9-assisted transcriptional repression to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.

Citations

Citations to this article as recorded by  
  • Industrial–scale production of various bio–commodities by engineered microbial cell factories: Strategies of engineering in microbial robustness
    Ju-Hyeong Jung, Vinoth Kumar Ponnusamy, Gopalakrishnan Kumar, Bartłomiej Igliński, Vinod Kumar, Grzegorz Piechota
    Chemical Engineering Journal.2024; 502: 157679.     CrossRef
  • Microbial Cell Factories: Biodiversity, Pathway Construction, Robustness, and Industrial Applicability
    Rida Chaudhary, Ali Nawaz, Mireille Fouillaud, Laurent Dufossé, Ikram ul Haq, Hamid Mukhtar
    Microbiology Research.2024; 15(1): 247.     CrossRef
  • Adaptive Evolution for the Efficient Production of High-Quality d-Lactic Acid Using Engineered Klebsiella pneumoniae
    Bo Jiang, Jiezheng Liu, Jingnan Wang, Guang Zhao, Zhe Zhao
    Microorganisms.2024; 12(6): 1167.     CrossRef
  • Enhancing D-lactic acid production from non-detoxified corn stover hydrolysate via innovative F127-IEA hydrogel-mediated immobilization of Lactobacillus bulgaricus T15
    Yuhan Zheng, Feiyang Sun, Siyi Liu, Gang Wang, Huan Chen, Yongxin Guo, Xiufeng Wang, Maia Lia Escobar Bonora, Sitong Zhang, Yanli Li, Guang Chen
    Frontiers in Microbiology.2024;[Epub]     CrossRef
Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis
Ozan Ertekin , Meltem Kutnu , Aslı Aras Ta&# , Mustafa Demir , Ayten Yazgan Karata&# , Gülay Özcengiz
J. Microbiol. 2020;58(4):297-313.   Published online January 28, 2020
DOI: https://doi.org/10.1007/s12275-020-9064-0
  • 51 View
  • 0 Download
  • 6 Web of Science
  • 7 Crossref
AbstractAbstract
Bacilysin, as the simplest peptide antibiotic made up of only L-alanine and L-anticapsin, is produced and excreted by Bacillus subtilis under the control of quorum sensing. We analyzed bacilysin-nonproducing strain OGU1 which was obtained by bacA-targeted pMutin T3 insertion into the parental strain genome resulting in a genomic organization (bacA􍿁::lacZ::erm::bacABCDEF) to form an IPTG-inducible bac operon. Although IPTG induction provided 3- to 5-fold increment in the transcription of bac operon genes, no bacilysin activity was detectable in bioassays and inability of the OGU1 to form bacilysin was confirmed by UPLC-mass spectrometry analysis. Phenotypic analyses revealed the deficiencies in OGU1 with respect to colony pigmentation, spore coat proteins, spore resistance and germination, which could be rescued by external addition of bacilysin concentrate into its cultures. 2DE MALDI-TOF/MS and nanoLC-MS/MS were used as complementary approaches to compare cytosolic proteomes of OGU1. 2-DE identified 159 differentially expressed proteins corresponding to 121 distinct ORFs. In nanoLCMS/ MS, 76 proteins were differentially expressed in OGU1. Quantitative transcript analyses of selected genes validated the proteomic findings. Overall, the results pointed to the impact of bacilysin on expression of certain proteins of sporulation and morphogenesis; the members of mother cell compartment- specific σE and σK regulons in particular, quorum sensing and two component-global regulatory systems, peptide transport, stress response as well as CodY- and ScoCregulated proteins.

Citations

Citations to this article as recorded by  
  • Biocontrol Ability of Strain Bacillus amyloliquefaciens SQ-2 against Table Grape Rot Caused by Aspergillus tubingensis
    Suran Li, Shuangshuang Dai, Lei Huang, Yumeng Cui, Ming Ying
    Journal of Agricultural and Food Chemistry.2024; 72(44): 24374.     CrossRef
  • Isolation and identification of a novel Bacillus velezensis strain JIN4 and its potential for biocontrol of kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae
    Xin Zhao, Yang Zhai, Lin Wei, Fei Xia, Yuanru Yang, Yongjian Yi, Hongying Wang, Caisheng Qiu, Feng Wang, Liangbin Zeng
    Frontiers in Plant Science.2024;[Epub]     CrossRef
  • Signatures of kin selection in a natural population of the bacteria Bacillus subtilis
    Laurence J Belcher, Anna E Dewar, Chunhui Hao, Melanie Ghoul, Stuart A West
    Evolution Letters.2023; 7(5): 315.     CrossRef
  • Comparative biological network analysis for differentially expressed proteins as a function of bacilysin biosynthesis in Bacillus subtilis
    Meltem Kutnu, Elif Tekin İşlerel, Nurcan Tunçbağ, Gülay Özcengiz
    Integrative Biology.2022; 14(5): 99.     CrossRef
  • Probiotic effects of the Bacillus velezensis GY65 strain in the mandarin fish, Siniperca chuatsi
    Jiachuan Wang, Defeng Zhang, Yajun Wang, Zhijun Liu, Lijuan Liu, Cunbin Shi
    Aquaculture Reports.2021; 21: 100902.     CrossRef
  • Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens
    Catherine Nannan, Huong Quynh Vu, Annika Gillis, Simon Caulier, Thuy Thanh Thi Nguyen, Jacques Mahillon
    Journal of Biotechnology.2021; 327: 28.     CrossRef
  • Impact of spatial proximity on territoriality among human skin bacteria
    Jhonatan A. Hernandez-Valdes, Lu Zhou, Marcel P. de Vries, Oscar P. Kuipers
    npj Biofilms and Microbiomes.2020;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP