Research Support, Non-U.S. Gov't
- The crystal structure of the D-alanine-D-alanine ligase from Acinetobacter baumannii suggests a flexible conformational change in the central domain before nucleotide binding
-
Kim-Hung Huynh , Myoung-ki Hong , Clarice Lee , Huyen-Thi Tran , Sang Hee Lee , Yeh-Jin Ahn , Sun-Shin Cha , Lin-Woo Kang
-
J. Microbiol. 2015;53(11):776-782. Published online October 28, 2015
-
DOI: https://doi.org/10.1007/s12275-015-5475-8
-
-
45
View
-
0
Download
-
4
Crossref
-
Abstract
-
Acinetobacter baumannii, which is emerging as a multidrugresistant
nosocomial pathogen, causes a number of diseases,
including pneumonia, bacteremia, meningitis, and skin infections.
With ATP hydrolysis, the D-alanine-D-alanine ligase
(DDL) catalyzes the synthesis of D-alanyl-D-alanine, which
is an essential component of bacterial peptidoglycan. In this
study, we determined the crystal structure of DDL from A.
baumannii (AbDDL) at a resolution of 2.2 Å. The asymmetric
unit contained six protomers of AbDDL. Five protomers
had a closed conformation in the central domain, while one
protomer had an open conformation in the central domain.
The central domain with an open conformation did not interact
with crystallographic symmetry-related protomers and
the conformational change of the central domain was not due
to crystal packing. The central domain of AbDDL can have an
ensemble of the open and closed conformations before the
binding of substrate ATP. The conformational change of the
central domain is important for the catalytic activity and the
detail information will be useful for the development of inhibitors
against AbDDL and putative antibacterial agents
against A. baumannii. The AbDDL structure was compared
with that of other DDLs that were in complex with potent
inhibitors and the catalytic activity of AbDDL was confirmed
using enzyme kinetics assays.
-
Citations
Citations to this article as recorded by

- In Silico Design and In Vitro Assessment of Bicyclic Trifluoromethylated Pyrroles as New Antibacterial and Antifungal Agents
Diana Hodyna, Anton Klipkov, Maryna Kachaeva, Yurii Shulha, Igor Gerus, Larysa Metelytsia, Vasyl Kovalishyn
Chemistry & Biodiversity.2024;[Epub] CrossRef - Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model
Jinxin Zhao, Yan Zhu, Jiru Han, Yu-Wei Lin, Michael Aichem, Jiping Wang, Ke Chen, Tony Velkov, Falk Schreiber, Jian Li
Microorganisms.2020; 8(11): 1793. CrossRef - Identification of natural inhibitors against Acinetobacter baumannii d-alanine-d-alanine ligase enzyme: A multi-spectrum in silico approach
Sajjad Ahmad, Saad Raza, Sumra Wajid Abbasi, Syed Sikander Azam
Journal of Molecular Liquids.2018; 262: 460. CrossRef - Molecular characterization of SCO0765 as a cellotriose releasing endo-β-1,4-cellulase from Streptomyces coelicolor A(3)
Joo-Bin Hong, Vijayalakshmi Dhakshnamoorthy, Chang-Ro Lee
Journal of Microbiology.2016; 54(9): 626. CrossRef