Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
20 "bacteriophage"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Full article
Characterization of novel bacteriophages for effective phage therapy against Vibrio infections in aquaculture
Kira Moon, Sangdon Ryu, Seung Hui Song, Se Won Chun, Nakyeong Lee, Aslan Hwanhwi Lee
J. Microbiol. 2025;63(5):e2502009.   Published online May 27, 2025
DOI: https://doi.org/10.71150/jm.2502009
  • 4,781 View
  • 164 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract PDFSupplementary Material

The widespread use of antibiotics in aquaculture has led to the emergence of multidrug-resistant pathogens and environmental concerns, highlighting the need for sustainable, eco-friendly alternatives. In this study, we isolated and characterized three novel bacteriophages from aquaculture effluents in Korean shrimp farms that target the key Vibrio pathogens, Vibrio harveyi, and Vibrio parahaemolyticus. Bacteriophages were isolated through environmental enrichment and serial purification using double-layer agar assays. Transmission electron microscopy revealed that the phages infecting V. harveyi, designated as vB_VhaS-MS01 and vB_VhaS-MS03, exhibited typical Siphoviridae morphology with long contractile tails and icosahedral heads, whereas the phage isolated from V. parahaemolyticus (vB_VpaP-MS02) displayed Podoviridae characteristics with an icosahedral head and short tail.

Whole-genome sequencing produced complete, circularized genomes of 81,710 bp for vB_VhaS-MS01, 81,874 bp for vB_VhaS-MS03, and 76,865 bp for vB_VpaP-MS02, each showing a modular genome organization typical of Caudoviricetes. Genomic and phylogenetic analyses based on the terminase large subunit gene revealed that although vB_VhaS-MS01 and vB_VhaS-MS03 were closely related, vB_VpaP-MS02 exhibited a distinct genomic architecture that reflects its unique morphology and host specificity. Collectively, these comparative analyses demonstrated that all three phages possess genetic sequences markedly different from those of previously reported bacteriophages, thereby establishing their novelty. One-step growth and multiplicity of infection (MOI) experiments demonstrated significant differences in replication kinetics, such as burst size and lytic efficiency, among the phages, with vB_VhaS-MS03 maintaining the most effective bacterial control, even at an MOI of 0.01. Additionally, host range assays showed that vB_VhaS-MS03 possessed a broader spectrum of activity, supporting its potential use as a stand-alone agent or key component of phage cocktails. These findings highlight the potential of region-specific phage therapy as a targeted and sustainable alternative to antibiotics for controlling Vibrio infections in aquaculture.

Citations

Citations to this article as recorded by  
  • Feed Additives in Aquaculture: Benefits, Risks, and the Need for Robust Regulatory Frameworks
    Ekemini Okon, Matthew Iyobhebhe, Paul Olatunji, Mary Adeleke, Nelson Matekwe, Reuben Okocha
    Fishes.2025; 10(9): 471.     CrossRef
Research Article
Single nucleotide genome recognition and selective bacterial lysis using synthetic phages loaded with CRISPR-Cas12f1-truncated sgRNA
Ho Joung Lee, Song Hee Jeong, Sang Jun Lee
J. Microbiol. 2025;63(2):e2501012.   Published online February 27, 2025
DOI: https://doi.org/10.71150/jm.2501012
  • 1,435 View
  • 63 Download
AbstractAbstract PDFSupplementary Material

Phage specificity primarily relies on host cell-surface receptors. However, integrating cas genes and guide RNAs into phage genomes could enhance their target specificity and regulatory effects. In this study, we developed a CRISPR-Cas12f1 system-equipped bacteriophage λ model capable of detecting Escherichia coli target genes. We demonstrated that synthetic λ phages carrying Cas12f1-sgRNA can effectively prevent lysogen formation. Furthermore, we showcased that truncating the 3'-end of sgRNA enables precise identification of single-nucleotide variations in the host genome. Moreover, infecting E. coli strains carrying various stx2 gene subtypes encoding Shiga toxin with bacteriophages harboring Cas12f1 and truncated sgRNAs resulted in the targeted elimination of strains with matching subtype genes. These findings underscore the ability of phages equipped with the CRISPR-Cas12f1 system to precisely control microbial hosts by recognizing genomic sequences with high resolution.

Journal Articles
Characterization of Newly Isolated Bacteriophages Targeting Carbapenem-Resistant Klebsiella pneumoniae
Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim
J. Microbiol. 2024;62(12):1133-1153.   Published online December 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00180-7
  • 383 View
  • 8 Download
  • 1 Web of Science
  • 2 Crossref
AbstractAbstract PDF
Klebsiella pneumoniae, a Gram-negative opportunistic pathogen, is increasingly resistant to carbapenems in clinical settings. This growing problem necessitates the development of alternative antibiotics, with phage therapy being one promising option. In this study, we investigated novel phages targeting carbapenem-resistant Klebsiella pneumoniae (CRKP) and evaluated their lytic capacity against clinical isolates of CRKP. First, 23 CRKP clinical isolates were characterized using Multi-Locus Sequence Typing (MLST), carbapenemase test, string test, and capsule typing. MLST classified the 23 K. pneumoniae isolates into 10 sequence types (STs), with the capsule types divided into nine known and one unknown type. From sewage samples collected from a tertiary hospital, 38 phages were isolated. Phenotypic and genotypic characterization of these phages was performed using Random Amplification of Polymorphic DNA-PCR (RAPD-PCR), transmission electron microscopy (TEM), and whole genome sequencing (WGS) analysis. Host spectrum analysis revealed that each phage selectively lysed strains sharing the same STs as their hosts, indicating ST-specific activity. These phages were subtyped based on their host spectrum and RAPD-PCR, identifying nine and five groups, respectively. Fourteen phages were selected for further analysis using TEM and WGS, revealing 13 Myoviruses and one Podovirus. Genomic analysis grouped the phages into three clusters: one closely related to Alcyoneusvirus, one to Autographiviridae, and others to Straboviridae. Our results showed that the host spectrum of K. pneumoniae-specific phages corresponds to the STs of the host strain. These 14 novel phages also hold promise as valuable resources for phage therapy against CRKP.

Citations

Citations to this article as recorded by  
  • Evaluation of Bacteriophage and Antibiotic Synergy Against Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates
    Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim
    Journal of Bacteriology and Virology.2025; 55(2): 131.     CrossRef
  • Possible regulatory network and associated pathways governing the expression of ADH2 in Saccharomyces cerevisiae
    Pratima Sarkar, Rohan Nath, Prity Adhikary, Arindam Bhattacharjee
    Current Genetics.2025;[Epub]     CrossRef
Enterococcus Phage vB_EfaS_HEf13 as an Anti-Biofilm Agent Against Enterococcus faecalis
Dongwook Lee, Jintaek Im, A Reum Kim, Woohyung Jun, Cheol-Heui Yun, Seung Hyun Han
J. Microbiol. 2024;62(8):683-693.   Published online June 27, 2024
DOI: https://doi.org/10.1007/s12275-024-00150-z
  • 465 View
  • 9 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract PDF
Enterococcus faecalis is a Gram-positive bacterium that is frequently found in the periapical lesion of patients with apical periodontitis. Its biofilm formation in root canal is closely related to the development of refractory apical periodontitis by providing increased resistance to endodontic treatments. Phage therapy has recently been considered as an efficient therapeutic strategy in controlling various periodontal pathogens. We previously demonstrated the bactericidal capacities of Enterococcus phage vB_EfaS_HEf13 (phage HEf13) against clinically-isolated E. faecalis strains. Here, we investigated whether phage HEf13 affects biofilm formation and pre-formed biofilm of clinically-isolated E. faecalis, and its combinatory effect with endodontic treatments, including chlorhexidine (CHX) and penicillin. The phage HEf13 inhibited biofilm formation and disrupted pre-formed biofilms of E. faecalis in a dose- and time-dependent manner. Interestingly, phage HEf13 destroyed E. faecalis biofilm exopolysaccharide (EPS), which is known to be a major component of bacterial biofilm. Furthermore, combined treatment of phage HEf13 with CHX or penicillin more potently inhibited biofilm formation and disrupted pre-formed biofilm than either treatment alone. Confocal laser scanning microscopic examination demonstrated that these additive effects of the combination treatments on disruption of pre-formed biofilm are mediated by relatively enhanced reduction in thickness distribution and biomass of biofilm. Collectively, our results suggest that the effect of phage HEf13 on E. faecalis biofilm is mediated by its EPS-degrading property, and its combination with endodontic treatments more potently suppresses E. faecalis biofilm, implying that phage HEf13 has potential to be used as a combination therapy against E. faecalis infections.

Citations

Citations to this article as recorded by  
  • Size-dependent ecotoxicological impacts of tire wear particles on zebrafish physiology and gut microbiota: Implications for aquatic ecosystem health
    Yun Zhang, Qianqian Song, Qingxuan Meng, Tianyu Zhao, Xiaolong Wang, Xinrui Meng, Jing Cong
    Journal of Hazardous Materials.2025; 487: 137215.     CrossRef
[Protocol] Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering
Shin-Yae Choi , Danitza Xiomara Romero-Calle , Han-Gyu Cho , Hee-Won Bae , You-Hee Cho
J. Microbiol. 2024;62(1):1-10.   Published online February 1, 2024
DOI: https://doi.org/10.1007/s12275-024-00107-2
  • 560 View
  • 21 Download
  • 2 Web of Science
  • 4 Crossref
AbstractAbstract PDF
Bacteriophages (phages) are natural antibiotics and biological nanoparticles, whose application is significantly boosted by recent advances of synthetic biology tools. Designer phages are synthetic phages created by genome engineering in a way to increase the benefits or decrease the drawbacks of natural phages. Here we report the development of a straightforward genome engineering method to efficiently obtain engineered phages in a model bacterial pathogen, Pseudomonas aeruginosa. This was achieved by eliminating the wild type phages based on the Streptococcus pyogenes Cas9 (SpCas9) and facilitating the recombinant generation based on the Red recombination system of the coliphage λ (λRed). The producer (PD) cells of P. aeruginosa strain PAO1 was created by miniTn7-based chromosomal integration of the genes for SpCas9 and λRed under an inducible promoter. To validate the efficiency of the recombinant generation, we created the fluorescent phages from a temperate phage MP29. A plasmid bearing the single guide RNA (sgRNA) gene for selectively targeting the wild type gp35 gene and the editing template for tagging the Gp35 with superfolder green fluorescent protein (sfGFP) was introduced into the PD cells by electroporation. We found that the targeting efficiency was affected by the position and number of sgRNA. The fluorescent phage particles were efficiently recovered from the culture of the PD cells expressing dual sgRNA molecules. This protocol can be used to create designer phages in P. aeruginosa for both application and research purposes.

Citations

Citations to this article as recorded by  
  • Pilin regions that select for the small RNA phages in Pseudomonas aeruginosa type IV pilus
    Hee-Won Bae, Hyeong-Jun Ki, Shin-Yae Choi, You-Hee Cho, Kristin N. Parent
    Journal of Virology.2025;[Epub]     CrossRef
  • Synthetic and Functional Engineering of Bacteriophages: Approaches for Tailored Bactericidal, Diagnostic, and Delivery Platforms
    Ola Alessa, Yoshifumi Aiba, Mahmoud Arbaah, Yuya Hidaka, Shinya Watanabe, Kazuhiko Miyanaga, Dhammika Leshan Wannigama, Longzhu Cui
    Molecules.2025; 30(15): 3132.     CrossRef
  • Characteristics of bioaerosols under high-ozone periods, haze episodes, dust storms, and normal days in Xi’an, China
    Yiming Yang, Liu Yang, Xiaoyan Hu, Zhenxing Shen
    Particuology.2024; 90: 140.     CrossRef
  • Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline
    Dale W. Griffin, Nilgün Kubilay, Mustafa Koçak, Mike A. Gray, Timothy C. Borden, Eugene A. Shinn
    Atmospheric Environment.2007; 41(19): 4050.     CrossRef
Molecular mechanism of Escherichia coli H10407 induced diarrhoea and its control through immunomodulatory action of bioactives from Simarouba amara (Aubl.)
Hegde Veena , Sandesh K. Gowda , Rajeshwara N. Achur , Nayaka Boramuthi Thippeswamy
J. Microbiol. 2021;59(4):435-447.   Published online February 25, 2021
DOI: https://doi.org/10.1007/s12275-021-0423-2
  • 388 View
  • 0 Download
  • 4 Web of Science
  • 2 Crossref
AbstractAbstract PDF
Enterotoxigenic Escherichia coli (ETEC) infection is a major cause of death in children under the age of five in developing countries. ETEC (O78:H11:CFA/I:LT+:ST+) mechanism has been studied in detail with either heat labile (LT) or heat stable (ST) toxins using in vitro and in vivo models. However, there is no adequate information on ETEC pathogenesis producing both the toxins (LT, ST) in BALB/c mice model. In this study, female mice have been employed to understand ETEC H10407 infection induced changes in physiology, biochemical and immunological patterns up to seven days post-infection and the antidiarrhoeal effect of Simarouba amara (Aubl.) bark aqueous extract (SAAE) has also been looked into. The results indicate that BALB/c is sensitive to ETEC infection resulting in altered jejunum and ileum histomorphology. Withal, ETEC influenced cAMP, PGE2, and NO production resulting in fluid accumulation with varied Na+, K+, Cl-, and Ca2+ levels. Meanwhile, ETEC subverted expression of IL-1β, intestine alkaline phosphatase (IAP), and myeloperoxidase (MPO) in jejunum and ileum. Our data also indicate the severity of pathogenesis reduction which might be due to attainment of equilibrium after reaching optimum rate of infection. Nevertheless, degree of pathogenesis was highly significant (p < 0.01) in all the studied parameters. Besides that, SAAE was successful in reducing the infectious diarrhoea by inhibiting ETEC H10407 in intestine (jejunum and ileum), and shedding in feces. SAAE decreased cAMP, PGE2, and fluid accumulation effectively and boosted the functional activity of immune system in jejunum and ileum IAP, MPO, IL-1β, and nitric oxide.

Citations

Citations to this article as recorded by  
  • Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I
    Dayeong Bae, Hana Hyeon, Eunkyoung Shin, Ji-Hyun Yeom, Kangseok Lee
    Journal of Microbiology.2023; 61(2): 211.     CrossRef
  • A systematic antidiarrhoeal evaluation of a vegetable root Begonia roxburghii and its marker flavonoids against nonpathogenic and pathogenic diarrhoea
    Rupali S. Prasad, Nikhil Y. Yenorkar, Suhas R. Dhaswadikar, Saurabh K. Sinha, Nitish Rai, Pravesh Sharma, Onkar Kulkarni, Neeraj Kumar, Mahaveer Dhobi, Damiki Laloo, Shailendra S. Gurav, Prakash R. Itankar, Satyendra K. Prasad
    Food Bioscience.2023; 53: 102672.     CrossRef
Review
Dissection of plant microbiota and plant-microbiome interactions
Kihyuck Choi , Raees Khan , Seon-Woo Lee
J. Microbiol. 2021;59(3):281-291.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-0619-5
  • 381 View
  • 0 Download
  • 50 Web of Science
  • 47 Crossref
AbstractAbstract PDF
Plants rooted in soil have intimate associations with a diverse array of soil microorganisms. While the microbial diversity of soil is enormous, the predominant bacterial phyla associated with plants include Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. Plants supply nutrient niches for microbes, and microbes support plant functions such as plant growth, development, and stress tolerance. The interdependent interaction between the host plant and its microbes sculpts the plant microbiota. Plant and microbiome interactions are a good model system for understanding the traits in eukaryotic organisms from a holobiont perspective. The holobiont concept of plants, as a consequence of co-evolution of plant host and microbiota, treats plants as a discrete ecological unit assembled with their microbiota. Dissection of plant-microbiome interactions is highly complicated; however, some reductionist approaches are useful, such as the synthetic community method in a gnotobiotic system. Deciphering the interactions between plant and microbiome by this reductionist approach could lead to better elucidation of the functions of microbiota in plants. In addition, analysis of microbial communities’ interactions would further enhance our understanding of coordinated plant microbiota functions. Ultimately, better understanding of plantmicrobiome interactions could be translated to improvements in plant productivity.

Citations

Citations to this article as recorded by  
  • Plant-microbe interactions: PGPM as microbial inoculants/biofertilizers for sustaining crop productivity and soil fertility
    Bibek Laishram, Okram Ricky Devi, Rinjumoni Dutta, T. Senthilkumar, Girish Goyal, Dinesh Kumar Paliwal, Narinder Panotra, Akhtar Rasool
    Current Research in Microbial Sciences.2025; 8: 100333.     CrossRef
  • The combined effects of tetracycline and glyphosate on growth and rhizosphere bacteria community in hulless barley over the whole growth period
    Wenxiu Xue, Shuhao Zhang, Fazila Younas, Ruwen Ma, Xingxu Yu, Jie Li, Xiaocui Wu, Wenhan Liu, Huitian Duan, Kang Wang, Xiaowei Cui, Xiufeng Cao, Zhaojie Cui
    Journal of Hazardous Materials.2025; 484: 136706.     CrossRef
  • Diversity Analysis of Rhizosphere Microorganisms in Helichrysum arenarium (L.) Moench and Screening of Growth-Promoting Bacteria in Xinjiang, China
    Xiaoyan Xin, Wei He, Junhui Zhou, Yong Chen, Xin Huang, Jinyu Yang, Jianjun Xu, Suqin Song
    Microbiology Research.2025; 16(5): 89.     CrossRef
  • Bacterial community in the hyphosphere of an arbuscular mycorrhizal fungus differs from that in the surrounding environment and is influenced by hyphal disruption
    Zexing Jin, Shilong Duan, Stéphane Declerck, Lin Zhang
    Mycorrhiza.2025;[Epub]     CrossRef
  • Enhanced complexity of interkingdom co-occurrence networks in blueberry rhizosphere microbial communities under soil pH stress
    Jilu Che, Yaqiong Wu, Hao Yang, Ying Chang, Wenlong Wu, Lianfei Lyu, Xiaomin Wang, Fuliang Cao, Weilin Li
    Applied Soil Ecology.2025; 212: 106191.     CrossRef
  • Strong Host Modulation of Rhizosphere‐to‐Endosphere Microbial Colonisation in Natural Populations of the Pan‐Palaeotropical Keystone Grass Species, Themeda triandra
    Riley J. Hodgson, Christian Cando‐Dumancela, Craig Liddicoat, Sunita A. Ramesh, Robert A. Edwards, Martin F. Breed
    Ecology and Evolution.2025;[Epub]     CrossRef
  • Exploring the Bacterial Microbiota of Seeds
    Angel J. Matilla
    Microbial Biotechnology.2025;[Epub]     CrossRef
  • Endophytic bacterial communities associated with halophytic plants in kebili and Gabes regions of Southern Tunisia
    Ichrak Hamdene, Cristina Bez, Iris Bertani, Jorge Rojas López-Menchero, Anissa Yahyaoui, Vittorio Venturi, Najla Sadfi-Zouaoui
    BMC Microbiology.2025;[Epub]     CrossRef
  • High-resolution profiling of bacterial and fungal communities using pangenome-informed taxon-specific long-read amplicons
    Luzia Stalder, Monika Maurhofer, Daniel Croll
    Microbiome.2025;[Epub]     CrossRef
  • Trichoderma asperellum FJ035 Restructure the Rhizosphere Microbiome to Control the Cucumber Fusarium Wilt
    Manman Zhang, Rui Wang, Raja Asad Ali Khan, Xin Zhan, Sen Ren, Haonan Jiang, Chenyao Zheng, Yinggu Wu, Fanxing Yang, Xiaoli Yu, Tong Liu
    Plant, Cell & Environment.2025;[Epub]     CrossRef
  • Modeling Growth Kinetics of Escherichia coli and Background Microflora in Hydroponically Grown Lettuce
    Xiaoyan You, Dongqun Yang, Yang Qu, Mingming Guo, Yangping Zhang, Xiaoyan Zhao, Yujuan Suo
    Foods.2024; 13(9): 1359.     CrossRef
  • Influence and Role of Fungi, Bacteria, and Mixed Microbial Populations on Phosphorus Acquisition in Plants
    Yu Luo, Lige Ma, Qirui Feng, Huan Luo, Chen Chen, Shuqi Wang, Yue Yuan, Can Liu, Xulv Cao, Nannan Li
    Agriculture.2024; 14(3): 358.     CrossRef
  • Endophytic Pseudomonas fluorescens promotes changes in the phenotype and secondary metabolite profile of Houttuynia cordata Thunb.
    Kaifeng Wang, Zhannan Yang, Shiqiong Luo, Wenxuan Quan
    Scientific Reports.2024;[Epub]     CrossRef
  • Rhizosphere Microorganisms in Subsurface Flow Garden Constructed Wetland and their Influence on Nitrogen Removal Efficiency
    Baishi Wang, Liping Wu, Ruoqiao Wang, Jiangbo Huo, Zhou Yi, Zexin Wang, Hongzhou Zhang
    Water, Air, & Soil Pollution.2024;[Epub]     CrossRef
  • Developing stable, simplified, functional consortia from Brachypodium rhizosphere for microbial application in sustainable agriculture
    Mingfei Chen, Shwetha M. Acharya, Mon Oo Yee, Kristine Grace M. Cabugao, Romy Chakraborty
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Using biochar for environmental recovery and boosting the yield of valuable non-food crops: The case of hemp in a soil contaminated by potentially toxic elements (PTEs)
    Matteo Garau, Mauro Lo Cascio, Sotirios Vasileiadis, Tom Sizmur, Maria Nieddu, Maria Vittoria Pinna, Costantino Sirca, Donatella Spano, Pier Paolo Roggero, Giovanni Garau, Paola Castaldi
    Heliyon.2024; 10(6): e28050.     CrossRef
  • Differences in autotoxic substances and microbial community in the root space of Panax notoginseng coinducing the occurrence of root rot
    Jinmiao Chen, Zhidan Liu, Yuyan Liu, Xiuling Ji, Xiaoran Li, Yunlin Wei, Futing Zi, Yong Tan, Arpita Bose
    Applied and Environmental Microbiology.2024;[Epub]     CrossRef
  • Root-associated microbial diversity and metabolomics in maize resistance to stalk rot
    Liming Wang, Jiao Jia, Qianfu Su, Hongzhe Cao, Shiqi Jia, Helong Si, Zhiyan Cao, Shujie Ma, Jihong Xing, Kang Zhang, Jingao Dong
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Interplant communication increases aphid resistance and alters rhizospheric microbes in neighboring plants of aphid‐infested cucumbers
    Xingchen Liu, Changxia Du, Yinqing Tan, Cong Yue, Huaifu Fan
    Pest Management Science.2024; 80(10): 5005.     CrossRef
  • Phage-Dependent Alteration of Rhizosphere Microbiota in Tomato Plants
    Seung Yeup Lee, Roniya Thapa Magar, Kihyuck Choi, Hyo Jeong Kim, Insoo Park, Seon-Woo Lee
    Phytobiomes Journal.2024; 8(2): 223.     CrossRef
  • MAPK Cascades in Plant Microbiota Structure and Functioning
    Thijs Van Gerrewey, Hoo Sun Chung
    Journal of Microbiology.2024; 62(3): 231.     CrossRef
  • The structure and diversity of bacteria and fungi in the roots and rhizosphere soil of three different species of Geodorum
    Jianxiu Liu, Danjuan Zeng, Yang Huang, Lisha Zhong, Jialin Liao, Yuxing Shi, Haidu Jiang, Yajin Luo, Yu Liang, Shengfeng Chai
    BMC Genomics.2024;[Epub]     CrossRef
  • Irradiance level and elevation shape the soil microbiome communities of Coffea arabica L.
    Inocência da Piedade E. Tapaça, Chinedu C. Obieze, Gilberto V. de Melo Pereira, David Fangueiro, João Coutinho, Irene Fraga, Fábio L. Partelli, José C. Ramalho, Isabel Marques, Ana I. Ribeiro-Barros
    Environmental Microbiome.2024;[Epub]     CrossRef
  • Deciphering Molecular Mechanisms and Diversity of Plant Holobiont Bacteria: Microhabitats, Community Ecology, and Nutrient Acquisition
    Tomasz Grzyb, Justyna Szulc
    International Journal of Molecular Sciences.2024; 25(24): 13601.     CrossRef
  • Correlation of microbiomes in “plant-insect-soil” ecosystem
    Guomeng Li, Peng Liu, Jihan Zhao, Liangyinan Su, Mengyu Zhao, Zhengjie Jiang, Yang Zhao, Xiping Yang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Distinctive Structure and Assembly of Phyllosphere Microbial Communities between Wild and Cultivated Rice
    Yue Yin, Yi-Fei Wang, Hui-Ling Cui, Rui Zhou, Lv Li, Gui-Lan Duan, Yong-Guan Zhu, Kristen M. DeAngelis
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Ecological Processes of Bacterial and Fungal Communities Associated with Typha orientalis Roots in Wetlands Were Distinct during Plant Development
    Lixiao Wang, Jinxian Liu, Meiting Zhang, Tiehang Wu, Baofeng Chai, Alison Sinclair
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Existence of antibiotic pollutant in agricultural soil: Exploring the correlation between microbiome and pea yield
    Wangjing Zhai, Wenqi Jiang, Qiqi Guo, Zhixuan Wang, Donghui Liu, Zhiqiang Zhou, Peng Wang
    Science of The Total Environment.2023; 871: 162152.     CrossRef
  • Structural characteristics and diversity of the rhizosphere bacterial communities of wild Fritillaria przewalskii Maxim. in the northeastern Tibetan Plateau
    Zhijia Cui, Ran Li, Fan Li, Ling Jin, Haixu Wu, Chunya Cheng, Yi Ma, Zhenheng Wang, Yuanyuan Wang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Integrated metagenomics and metabolomics analysis reveals changes in the microbiome and metabolites in the rhizosphere soil of Fritillaria unibracteata
    Chengcheng Liu, Jingsheng Yu, Jizhe Ying, Kai Zhang, Zhigang Hu, Zhixiang Liu, Shilin Chen
    Frontiers in Plant Science.2023;[Epub]     CrossRef
  • Transfer of antibiotic resistance genes from soil to wheat: Role of host bacteria, impact on seed-derived bacteria, and affecting factors
    Yanping Shen, Yibo Liu, Yutong Du, Xu Wang, Jiunian Guan, Xiaohui Jia, Fukai Xu, Ziwei Song, Hongjie Gao, Baiyu Zhang, Ping Guo
    Science of The Total Environment.2023; 905: 167279.     CrossRef
  • Effects of different fertilization conditions and different geographical locations on the diversity and composition of the rhizosphere microbiota of Qingke (Hordeum vulgare L.) plants in different growth stages
    Lei Wang, Handong Wang, Meijin Liu, Jinqing Xu, Haiyan Bian, Tongrui Chen, En You, Chao Deng, Youhai Wei, Tianyu Yang, Yuhu Shen
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Editorial: Women in plant pathogen interactions: 2022
    Špela Baebler, Anna Coll, Giulia Malacarne
    Frontiers in Plant Science.2023;[Epub]     CrossRef
  • The Co-Association of Enterobacteriaceae and Pseudomonas with Specific Resistant Cucumber against Fusarium Wilt Disease
    Yu-Lu Zhang, Xiao-Jing Guo, Xin Huang, Rong-Jun Guo, Xiao-Hong Lu, Shi-Dong Li, Hao Zhang
    Biology.2023; 12(2): 143.     CrossRef
  • Niche-dependent microbial assembly in salt-tolerant tall fescue and its contribution to plant biomass
    Tianqi Zhu, Liang Zhang, Zizheng Yan, Bowen Liu, Youyue Li, Xiangkai You, Mo-Xian Chen, Tie-Yuan Liu, Yuefei Xu, Jianhua Zhang
    Industrial Crops and Products.2023; 206: 117736.     CrossRef
  • Effects of time-space conversion on microflora structure, secondary metabolites composition and antioxidant capacity of Codonopsis pilosula root
    Lili Fan, Jiangqin Wang, Feifan Leng, Shaowei Li, Xiang Ma, Xiaoli Wang, Yonggang Wang
    Plant Physiology and Biochemistry.2023; 198: 107659.     CrossRef
  • The Root Microbiome: Techniques for Exploration and Agricultural Applications
    Ashling Cannon
    BioTechniques.2023; 75(1): 1.     CrossRef
  • Multi-omics approaches for deciphering the microbial modulation of plants' genetic potentials: What's known and what's next?
    Febri Doni, Mia Miranti, Muhamad Shakirin Mispan, Zulqarnain Mohamed, Norman Uphoff
    Rhizosphere.2022; 24: 100613.     CrossRef
  • Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops
    Maria Sánchez-Bermúdez, Juan C. del Pozo, Mónica Pernas
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Multi-genome metabolic modeling predicts functional inter-dependencies in the Arabidopsis root microbiome
    Victor Mataigne, Nathan Vannier, Philippe Vandenkoornhuyse, Stéphane Hacquard
    Microbiome.2022;[Epub]     CrossRef
  • Can moderate heavy metal soil contaminations due to cement production influence the surrounding soil bacterial communities?
    Thiago Augusto da Costa Silva, Marcos de Paula, Washington Santos Silva, Gustavo Augusto Lacorte
    Ecotoxicology.2022; 31(1): 134.     CrossRef
  • Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility
    Delia A. Narváez-Barragán, Omar E. Tovar-Herrera, Arturo Guevara-García, Mario Serrano, Claudia Martinez-Anaya
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Fecal Microbiota Transplants for Inflammatory Bowel Disease Treatment: Synthetic- and Engineered Communities-Based Microbiota Transplants Are the Future
    Raees Khan, Nazish Roy, Hussain Ali, Muhammad Naeem, Eiji Sakai
    Gastroenterology Research and Practice.2022; 2022: 1.     CrossRef
  • The root microbiome: Community assembly and its contributions to plant fitness
    Bo Bai, Weidong Liu, Xingyu Qiu, Jie Zhang, Jingying Zhang, Yang Bai
    Journal of Integrative Plant Biology.2022; 64(2): 230.     CrossRef
  • The Role of Synthetic Microbial Communities (SynCom) in Sustainable Agriculture
    Ambihai Shayanthan, Patricia Ann C. Ordoñez, Ivan John Oresnik
    Frontiers in Agronomy.2022;[Epub]     CrossRef
  • Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses
    Su-Ee Lau, Wee Fei Aaron Teo, Ee Yang Teoh, Boon Chin Tan
    Discover Food.2022;[Epub]     CrossRef
  • Omics-based microbiome analysis in microbial ecology: from sequences to information
    Jang-Cheon Cho
    Journal of Microbiology.2021; 59(3): 229.     CrossRef
Journal Articles
Leucobacter coleopterorum sp. nov., Leucobacter insecticola sp. nov., and Leucobacter viscericola sp. nov., isolated from the intestine of the diving beetles, Cybister brevis and Cybister lewisianus, and emended description of the genus Leucobacter
Dong-Wook Hyun , Hojun Sung , Pil Soo Kim , Ji-Hyun Yun , Jin-Woo Bae
J. Microbiol. 2021;59(4):360-368.   Published online January 26, 2021
DOI: https://doi.org/10.1007/s12275-021-0472-6
  • 333 View
  • 0 Download
  • 8 Web of Science
  • 9 Crossref
AbstractAbstract PDF
Three novel bacterial strains, HDW9AT, HDW9BT, and HDW9CT, isolated from the intestine of the diving beetles Cybister lewisianus and Cybister brevis, were characterized as three novel species using a polyphasic approach. The isolates were Gram-staining-positive, strictly aerobic, non-motile, and rod-shaped. They grew optimally at 30°C (pH 7) in the presence of 0.5% (wt/vol) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that they belong to the genus Leucobacter and are closely related to L. denitrificans M1T8B10T (98.4–98.7% sequence similarity). Average nucleotide identity (ANI) values among the isolates were 76.4–84.1%. ANI values for the isolates and the closest taxonomic species, L. denitrificans KACC 14055T, were 72.3–73.1%. The isolates showed ANI values of < 76.5% with all analyzable Leucobacter strains in the EzBioCloud database. The genomic DNA G + C content of the isolates was 60.3–62.5%. The polar lipid components were phosphatidylglycerol, diphosphatidylglycerol, and other unidentified glycolipids, phospholipids, and lipids. The major cellular fatty acids were anteiso- C15:0, iso-C16:0, and anteiso-C17:0. MK-10 was the major respiratory quinone, and MK-7 and MK-11 were the minor respiratory quinones. The whole-cell sugar components of the isolates were ribose, glucose, galactose, and mannose. The isolates harbored L-2,4-diaminobutyric acid, L-serine, L-lysine, L-aspartic acid, glycine, and D-glutamic acid within the cell wall peptidoglycan. Based on phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses, strains HDW9AT, HDW9BT, and HDW9CT represent three novel species within the genus Leucobacter. We propose the name Leucobacter coleopterorum sp. nov. for strain HDW9AT (= KACC 21331T = KCTC 49317T = JCM 33667T), the name Leucobacter insecticola sp. nov. for strain HDW9BT (= KACC 21332T = KCTC 49318T = JCM 33668T), and the name Leucobacter viscericola sp. nov. for strain HDW9CT (= KACC 21333T = KCTC 49319T = JCM 33669T).

Citations

Citations to this article as recorded by  
  • Biogenic Silver Nanoparticles Produced by Soil Rare Actinomycetes and Their Significant Effect on Aspergillus-derived mycotoxins
    Mohamed N. Abd El-Ghany, Salwa A. Hamdi, Shereen M. Korany, Reham M. Elbaz, Ahmed N. Emam, Mohamed G. Farahat
    Microorganisms.2023; 11(4): 1006.     CrossRef
  • Leucobacter tenebrionis sp. nov., isolated from the gut of Tenebrio molitor
    Yu Ying, Bo Yuan, Tingting Liu, Xiaoshuan Bai, Haifeng Zhao
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Leucobacter allii sp. nov. and Leucobacter rhizosphaerae sp. nov., isolated from rhizospheres of onion and garlic, respectively
    Seunghwan Kim, Tomomi Asano, Hanako Naito, Moriyuki Hamada, Hang-Yeon Weon, Soon-Wo Kwon, Jun Heo
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Leucobacter chinensis sp. nov., with plant growth-promoting potential isolated from field soil after seven-years continuous maize cropping
    Jie Zhu, Juan Che, Xin Jiang, Mingchao Ma, Dawei Guan, Li Li, Fengming Cao, Baisuo Zhao, Yaowei Kang, Ji Zhao, Delong Kong, Yiqing Zhou, Zhiyong Ruan, Jun Li
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Changes of gut microbiota in colorectal cancer patients with Pentatrichomonas hominis infection
    Hongbo Zhang, Yanhui Yu, Jianhua Li, Pengtao Gong, Xiaocen Wang, Xin Li, Yidan Cheng, Xiuyan Yu, Nan Zhang, Xichen Zhang
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Lysobacter ciconiae sp. nov., and Lysobacter avium sp. nov., isolated from the faeces of an Oriental stork
    So-Yeon Lee, Pil Soo Kim, Hojun Sung, Dong-Wook Hyun, Jin-Woo Bae
    Journal of Microbiology.2022; 60(5): 469.     CrossRef
  • Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Leucobacter soli sp. nov., from soil amended with humic acid
    Peter Kämpfer, John A. McInroy, Dominique Clermont, Meina Neumann-Schaal, Alexis Criscuolo, Hans-Jürgen Busse, Stefanie P. Glaeser
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells
    Jun Yang, Kui Huang, Lansheng Peng, Jianhui Li, Aozhan Liu
    International Journal of Environmental Research and Public Health.2021; 18(18): 9713.     CrossRef
Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria
Shukho Kim , Sung-Hun Kim , Marzia Rahman , Jungmin Kim
J. Microbiol. 2018;56(12):917-925.   Published online October 25, 2018
DOI: https://doi.org/10.1007/s12275-018-8310-1
  • 347 View
  • 0 Download
  • 31 Crossref
AbstractAbstract PDF
In this study, we sought to isolate Salmonella Enteritidis-specific lytic bacteriophages (phages), and we found a lytic phage that could lyse not only S. Enteritidis but also other Gramnegative foodborne pathogens. This lytic phage, SS3e, could lyse almost all tested Salmonella enterica serovars as well as other enteric pathogenic bacteria including Escherichia coli, Shigella sonnei, Enterobacter cloacae, and Serratia marcescens. This SS3e phage has an icosahedral head and a long tail, indicating belong to the Siphoviridae. The genome was 40,793 base pairs, containing 58 theoretically determined open reading frames (ORFs). Among the 58 ORFs, ORF49, and ORF25 showed high sequence similarity with tail spike protein and lysozyme-like protein of Salmonella phage SE2, respectively, which are critical proteins recognizing and lysing host bacteria. Unlike SE2 phage whose host restricted to Salmonella enterica serovars Enteritidis and Gallinarum, SS3e showed broader host specificity against Gram-negative enteric bacteria; thus, it could be a promising candidate for the phage utilization against various Gram-negative bacterial infection including foodborne pathogens.

Citations

Citations to this article as recorded by  
  • Isolation and characterization of Salmonella enteritidis bacteriophage Salmp-p7 isolated from slaughterhouse effluent and its application in food
    Mengge Chen, Tong Yu, Xiangyu Cao, Jiaqi Pu, Deshu Wang, Hongkuan Deng
    Archives of Microbiology.2025;[Epub]     CrossRef
  • Two novel polyvalent phages: a promising approach for cross-order pathogen control in aquaculture
    Chengcheng Li, Yufei Yue, Rui Yin, Jiulong Zhao, Zengmeng Wang, Shailesh Nair, Yongyu Zhang
    Virology Journal.2025;[Epub]     CrossRef
  • Isolation and characterization of virulent bacteriophages and controlling Salmonella Enteritidis biofilms on chicken meat
    Xiaowen Sun, Fan Xue, Cong Cong, Bilal Murtaza, Chenxi Guo, Haochen Su, Xiaoyu Li, Lili Wang, Yongping Xu
    Microbial Pathogenesis.2025; 205: 107619.     CrossRef
  • Optimizing phage therapy for carbapenem-resistant Enterobacter cloacae bacteremia: insights into dose and timing
    Shi-Yong Fu, Xiu-Zhen Chen, Peng-Cheng Yi, Jie Gao, Wei-Xiao Wang, Shuang-Lin Gu, Jing-Han Gao, Du-Xian Liu, Han-Feng Xu, Yi Zeng, Chun-Mei Hu, Qin Zheng, Wei Chen, Pranita D. Tamma
    Antimicrobial Agents and Chemotherapy.2025;[Epub]     CrossRef
  • Therapeutic potential of novel phages with antibiotic combinations against ESBL-producing and carbapenem-resistant Escherichia Coli
    Md Shamsuzzaman, Shukho Kim, Jungmin Kim
    Journal of Global Antimicrobial Resistance.2025; 43: 86.     CrossRef
  • In vitro, genomic characterization and pre-clinical evaluation of a new thermostable lytic Obolenskvirus phage formulated as a hydrogel against carbapenem-resistant Acinetobacter baumannii
    Mahmoud M. Sherif, Neveen A. Abdelaziz, Mohammad Y. Alshahrani, Sarra E. Saleh, Khaled M. Aboshanab
    Scientific Reports.2025;[Epub]     CrossRef
  • Phage therapy as a promising solution for food safety: isolation and biological characterization of bacteriophage P2 for controlling Salmonella enterica infections
    Tran Khang Nam, Pham Thi Lanh, Man Hong Phuoc, Dong Van Quyen
    Academia Journal of Biology.2025; 47(2): 53.     CrossRef
  • Combating multidrug-resistant uropathogenic E. coli using lytic phages, enhancing antibiotic synergy and inhibiting biofilms
    Md Shamsuzzaman, Yoon-Jung Choi, Shukho Kim, Jungmin Kim
    International Microbiology.2025;[Epub]     CrossRef
  • Can natural preservatives serve as a new line of protective technology against bacterial pathogens in meat and meat products?
    Changyong Cheng, Lingli Jiang, Xiaoliang Li, Houhui Song, Weihuan Fang
    Food Quality and Safety.2024;[Epub]     CrossRef
  • Bacteriophage as a novel therapeutic approach for killing multidrug-resistant Escherichia coli ST131 clone
    Md Shamsuzzaman, Shukho Kim, Jungmin Kim
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Characterization of two virulent Salmonella phages and transient application in egg, meat and lettuce safety
    XiaoWen Sun, Fan Xue, Cong Cong, Bilal Murtaza, LiLi Wang, XiaoYu Li, ShuYing Li, YongPing Xu
    Food Research International.2024; 190: 114607.     CrossRef
  • Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems
    Shanshan Liu, Siew-Young Quek, Kang Huang
    Critical Reviews in Food Science and Nutrition.2024; 64(33): 12574.     CrossRef
  • Review of phage display: A jack-of-all-trades and master of most biomolecule display
    Brenda Pei Chui Song, Angela Chiew Wen Ch'ng, Theam Soon Lim
    International Journal of Biological Macromolecules.2024; 256: 128455.     CrossRef
  • Application of the lytic bacteriophage Rostam to control Salmonella enteritidis in eggs
    Rahim Azari, Mohammad Hashem Yousefi, Zohreh Taghipour, Jeroen Wagemans, Rob Lavigne, Saeid Hosseinzadeh, Seyed Mohammad Mazloomi, Marta Vallino, Sepideh Khalatbari-Limaki, Enayat Berizi
    International Journal of Food Microbiology.2023; 389: 110097.     CrossRef
  • Isolation and genomic characterization of Vmp-1 using Vibrio mimicus as the host: A novel virulent bacteriophage capable of cross-species lysis against three Vibrio spp.
    Bin Yang, Yang Wang, Lu Gao, Sheng-qi Rao, Wen-yuan Zhou, Zhen-quan Yang, Xin-an Jiao, Benjamin Kumah Mintah, Mokhtar Dabbour
    Microbial Pathogenesis.2023; 174: 105948.     CrossRef
  • A Review on the Antimicrobial Effect of Honey on Salmonella and Listeria monocytogenes: Recent Studies
    Fatih Ramazan İSTANBULLUGİL, Nuri TAŞ, Ulaş ACARÖZ, Damla ARSLAN-ACAROZ, Ömer ÇAKMAK, Sezen EVRENKAYA, Zeki GÜRLER
    Manas Journal of Agriculture Veterinary and Life Sciences.2023; 13(2): 210.     CrossRef
  • Characterization of a Diverse Collection of Salmonella Phages Isolated from Tennessee Wastewater
    Daniel W. Bryan, Lauren K. Hudson, Jia Wang, Thomas G. Denes
    PHAGE.2023; 4(2): 90.     CrossRef
  • Newly Isolated Virulent Salmophages for Biocontrol of Multidrug-Resistant Salmonella in Ready-to-Eat Plant-Based Food
    Michał Wójcicki, Olga Świder, Paulina Średnicka, Dziyana Shymialevich, Tomasz Ilczuk, Łukasz Koperski, Hanna Cieślak, Barbara Sokołowska, Edyta Juszczuk-Kubiak
    International Journal of Molecular Sciences.2023; 24(12): 10134.     CrossRef
  • Prevalence of Indigenous Antibiotic-Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra-Broad Specificity
    Jaein Choe, Su-Hyeon Kim, Ji Min Han, Jong-Hoon Kim, Mi-Sun Kwak, Do-Won Jeong, Mi-Kyung Park
    Journal of Microbiology.2023; 61(12): 1063.     CrossRef
  • Statistical optimization of a podoviral anti-MRSA phage CCASU-L10 generated from an under sampled repository: Chicken rinse
    Israa M. Abd-Allah, Ghadir S. El-Housseiny, Mohamed H. Al-Agamy, Hesham H. Radwan, Khaled M. Aboshanab, Nadia A. Hassouna
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Characterization and Genome Study of a Newly Isolated Temperate Phage Belonging to a New Genus Targeting Alicyclobacillus acidoterrestris
    Dziyana Shymialevich, Michał Wójcicki, Olga Świder, Paulina Średnicka, Barbara Sokołowska
    Genes.2023; 14(6): 1303.     CrossRef
  • An Anti-MRSA Phage From Raw Fish Rinse: Stability Evaluation and Production Optimization
    Israa M. Abd-Allah, Ghadir S. El-Housseiny, Mohammad Y. Alshahrani, Samar S. El-Masry, Khaled M. Aboshanab, Nadia A. Hassouna
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Anti-Salmonella polyvinyl alcohol coating containing a virulent phage PBSE191 and its application on chicken eggshell
    Sangbin Kim, Yoonjee Chang
    Food Research International.2022; 162: 111971.     CrossRef
  • Applications of bacteriophages against intracellular bacteria
    Paulina Śliwka, Marta Ochocka, Aneta Skaradzińska
    Critical Reviews in Microbiology.2022; 48(2): 222.     CrossRef
  • In Vitro and In Vivo Gastrointestinal Survival of Non-Encapsulated and Microencapsulated Salmonella Bacteriophages: Implications for Bacteriophage Therapy in Poultry
    Laura Lorenzo-Rebenaque, Danish J. Malik, Pablo Catalá-Gregori, Clara Marin, Sandra Sevilla-Navarro
    Pharmaceuticals.2021; 14(5): 434.     CrossRef
  • How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector
    Karen Fong, Catherine W.Y. Wong, Siyun Wang, Pascal Delaquis
    PHAGE.2021; 2(2): 83.     CrossRef
  • Characterization and Application of a Lytic Phage D10 against Multidrug-Resistant Salmonella
    Zhiwei Li, Wanning Li, Wenjuan Ma, Yifeng Ding, Yu Zhang, Qile Yang, Jia Wang, Xiaohong Wang
    Viruses.2021; 13(8): 1626.     CrossRef
  • Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa
    Shukho Kim, Da-Won Lee, Jong-Sook Jin, Jungmin Kim
    Journal of Global Antimicrobial Resistance.2020; 22: 32.     CrossRef
  • Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its biocontrol potential on lettuce and tofu
    Aiping Liu, Yilin Liu, Lin Peng, Xingzhe Cai, Li Shen, Maoping Duan, Yu Ning, Shuliang Liu, Chunyan Li, Yuntao Liu, Hong Chen, Wenjuan Wu, Xiaohong Wang, Bin Hu, Cheng Li
    LWT.2020; 118: 108791.     CrossRef
  • State of the Art in the Culture of the Human Microbiota: New Interests and Strategies
    Maryam Tidjani Alou, Sabrina Naud, Saber Khelaifia, Marion Bonnet, Jean-Christophe Lagier, Didier Raoult
    Clinical Microbiology Reviews.2020;[Epub]     CrossRef
  • Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella Enteritidis detection
    In Young Choi, Cheonghoon Lee, Won Keun Song, Sung Jae Jang, Mi-Kyung Park
    Journal of Microbiology.2019; 57(2): 170.     CrossRef
Research Support, Non-U.S. Gov'ts
Comparative Genomic Analysis of Bacteriophage EP23 Infecting Shigella sonnei and Escherichia coli
Ho-Won Chang , Kyoung-Ho Kim
J. Microbiol. 2011;49(6):927-934.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1577-0
  • 188 View
  • 0 Download
  • 19 Scopus
AbstractAbstract PDF
Bacteriophage EP23 that infects Escherichia coli and Shigella sonnei was isolated and characterized. The bacteriophage morphology was similar to members of the family Siphoviridae. The 44,077 bp genome was fully sequenced using 454 pyrosequencing. Comparative genomic and phylogenetic analyses showed that EP23 was most closely related to phage SO-1, which infects Sodalis glossinidius and phage SSL-2009a, which infects engineered E. coli. Genomic comparison indicated that EP23 and SO-1 were very similar with each other in terms of gene order and amino acid similarity, even though their hosts were separated in the level of genus. EP23 and SSL-2009a displayed high amino acid similarity between their genes, but there was evidence of several recombination events in SSL-2009a. The results of the comparative genomic analyses further the understanding of the evolution and relationship between EP23 and its bacteriophage relatives.
Antibacterial Efficacy of Lytic Pseudomonas Bacteriophage in Normal and Neutropenic Mice Models
Birendra R. Tiwari , Shukho Kim , Marzia Rahman , Jungmin Kim
J. Microbiol. 2011;49(6):994-999.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1512-4
  • 205 View
  • 0 Download
  • 72 Crossref
AbstractAbstract PDF
Recently, lytic bacteriophages (phages) have been focused on treating bacterial infectious diseases. We investigated the protective efficacy of a novel Pseudomonas aeruginosa phage, PA1Ø, in normal and neutropenic mice. A lethal dose of P. aeruginosa PAO1 was administered via the intraperitoneal route and a single dose of PA1Ø with different multiplicities of infection (MOI) was treated into infected mice. Immunocompetent mice infected with P. aeruginosa PAO1 were successfully protected by PA1Ø of 1 MOI, 10 MOI or 100 MOI with 80% to 100% survival rate. No viable bacteria were found in organ samples after 48 h of the phage treatment. Phage clearing patterns were different in the presence or absence of host bacteria but PA1Ø disappeared from all organs after 72 h except spleen in the presence of host bacteria. On the contrary, PA1Ø treatment could not protect neutropenic mice infected with P. aeruginosa PAO1 even though could extend their lives for a short time. In in vitro phage-neutrophil bactericidal test, a stronger bactericidal effect was observed in phage-neutrophil co-treatment than in phage single treatment without neutrophils, suggesting phage-neutrophil co-work is essential for the efficient killing of bacteria in the mouse model. In conclusion, PA1Ø can be possibly utilized in future phage therapy endeavors since it exhibited strong protective effects against virulent P. aeruginosa infection.

Citations

Citations to this article as recorded by  
  • Isolation and characterization of a potent bacteriophage KA targeting an antibiotic-resistant human pathogenic strain of Klebsiella pneumoniae KP1
    Aneela Nawaz, Nauman Ahmed Khalid, Sidra Zaheer, Muhammad Ismail Khan, Ali Khalid, Aamer Ali Shah, Malik Badshah, Samiullah Khan
    Microbial Pathogenesis.2026; 210: 108150.     CrossRef
  • Phage-induced protection against lethal bacterial reinfection
    Yikun Xing, Haroldo J. Hernandez Santos, Ling Qiu, Samantha R. Ritter, Jacob J. Zulk, Rachel Lahowetz, Kathryn A. Patras, Austen L. Terwilliger, Anthony W. Maresso
    Proceedings of the National Academy of Sciences.2025;[Epub]     CrossRef
  • Bacteriophages as an alternative strategy for the treatment of drug resistant bacterial infections: Current approaches and future perspectives
    Abayeneh Girma
    The Cell Surface.2025; 14: 100149.     CrossRef
  • Multi-strain phage induced clearance of bacterial infections
    Jacopo Marchi, Chau Nguyen Ngoc Minh, Laurent Debarbieux, Joshua S Weitz, Rob J De Boer
    PLOS Computational Biology.2025; 21(2): e1012793.     CrossRef
  • Overcoming Pseudomonas aeruginosa in Chronic Suppurative Lung Disease: Prevalence, Treatment Challenges, and the Promise of Bacteriophage Therapy
    Jagdev Singh, Melinda Solomon, Jonathan Iredell, Hiran Selvadurai
    Antibiotics.2025; 14(5): 427.     CrossRef
  • Isolation and identification of a newly discovered broad-spectrum Acinetobacter baumannii phage and therapeutic validation against pan-resistant Acinetobacter baumannii
    Miaomiao Lin, Lele Xiong, Wen Li, Lingyan Xiao, Wei Zhang, Xiaogui Zhao, Yishan Zheng
    Virologica Sinica.2025; 40(4): 587.     CrossRef
  • Overcoming antimicrobial resistance: Phage therapy as a promising solution to combat ESKAPE pathogens
    Ritu Raj Patel, Pandey Priya Arun, Sudhir Kumar Singh, Meenakshi Singh
    International Journal of Antimicrobial Agents.2025; 66(6): 107640.     CrossRef
  • Phage-mediated TLR2 signaling attenuates intracellular Mycobacterium abscessus survival in macrophages
    Hannah Kapoor, Aaron M. Maves, Madeline A. Bowder, Lia Danelishvili
    Scientific Reports.2025;[Epub]     CrossRef
  • Neutrophils, not macrophages, aid phage-mediated control of pulmonary Pseudomonas aeruginosa infection
    Chantal Weissfuss, Karen Hoffmann, Ulrike Behrendt, Magdalena Bürkle, Shailey G. Twamley, Imke H. E. Korf, Katharina Ahrens, Christine Rohde, Christian M. Zobel, Laurent Debarbieux, Jean-Damien Ricard, Martin Witzenrath, Geraldine Nouailles
    Frontiers in Immunology.2025;[Epub]     CrossRef
  • Mycobacteriophages: therapeutic approach for mycobacterial infections
    Sunil Kumar Raman, D.V. Siva Reddy, Vikas Jain, Urmi Bajpai, Amit Misra, Amit Kumar Singh
    Drug Discovery Today.2024; 29(7): 104049.     CrossRef
  • Pseudomonas aeruginosa Bacteriophages and Their Clinical Applications
    Elaheh Alipour-Khezri, Mikael Skurnik, Gholamreza Zarrini
    Viruses.2024; 16(7): 1051.     CrossRef
  • Exploiting lung adaptation and phage steering to clear pan-resistant Pseudomonas aeruginosa infections in vivo
    Eleri A. Ashworth, Rosanna C. T. Wright, Rebecca K. Shears, Janet K. L. Wong, Akram Hassan, James P. J. Hall, Aras Kadioglu, Joanne L. Fothergill
    Nature Communications.2024;[Epub]     CrossRef
  • Phage-inspired strategies to combat antibacterial resistance
    Mianzhi Wang, Junxuan Zhang, Jingyi Wei, Lei Jiang, Li Jiang, Yongxue Sun, Zhenling Zeng, Zhiqiang Wang
    Critical Reviews in Microbiology.2024; 50(2): 196.     CrossRef
  • Bacteriophages isolated from mouse feces attenuates pneumonia mice caused by Pseudomonas aeruginosa
    Nuttawut Sutnu, Wiwat Chancharoenthana, Supitcha Kamolratanakul, Pornpimol Phuengmaung, Uthaibhorn Singkham-In, Chiratchaya Chongrak, Sirikan Montathip, Dhammika Leshan Wannigama, Tanittha Chatsuwan, Puey Ounjai, Marcus J. Schultz, Asada Leelahavanichkul,
    PLOS ONE.2024; 19(7): e0307079.     CrossRef
  • Evaluation of the impact of repeated intravenous phage doses on mammalian host–phage interactions
    Xin Tan, Kai Chen, Zhihuan Jiang, Ziqiang Liu, Siyun Wang, Yong Ying, Jieqiong Zhang, Shengjian Yuan, Zhipeng Huang, Ruyue Gao, Min Zhao, Aoting Weng, Yongqing Yang, Huilong Luo, Daizhou Zhang, Yingfei Ma, Kristin N. Parent
    Journal of Virology.2024;[Epub]     CrossRef
  • The contribution of neutrophils to bacteriophage clearance and pharmacokinetics in vivo
    Arne Echterhof, Tejas Dharmaraj, Arya Khosravi, Robert McBride, Lynn Miesel, Ju-Hsin Chia, Patrick M. Blankenberg, Kun-Yuan Lin, Chien-Chang Shen, Yu-Ling Lee, Yu-Chuan Yeh, Wei Ting Liao, Francis G. Blankenberg, Krystyna Dąbrowska, Derek F. Amanatullah,
    JCI Insight.2024;[Epub]     CrossRef
  • In vivo safety evaluation and tracing of arginylglycylaspartic acid-engineered phage nanofiber in murine model
    Kshitiz Raj Shrestha, Sehoon Kim, Anna Jo, Murali Ragothaman, So Young Yoo
    Journal of Materials Chemistry B.2024; 12(40): 10258.     CrossRef
  • Metapopulation model of phage therapy of an acute Pseudomonas aeruginosa lung infection
    Rogelio A. Rodriguez-Gonzalez, Quentin Balacheff, Laurent Debarbieux, Jacopo Marchi, Joshua S. Weitz, Oleg A. Igoshin
    mSystems.2024;[Epub]     CrossRef
  • Pharmacokinetics and Biodistribution of Phages and their Current Applications in Antimicrobial Therapy
    Dayeon Kang, Damayanti Bagchi, Irene A. Chen
    Advanced Therapeutics.2024;[Epub]     CrossRef
  • Phage therapy: A primer for orthopaedic trauma surgeons
    Baixing Chen, T.Fintan Moriarty, Willem-Jan Metsemakers, Marco Chittò
    Injury.2024; 55: 111847.     CrossRef
  • Pharmacokinetics and pharmacodynamics of bacteriophage therapy: a review with a focus on multidrug-resistant Gram-negative bacterial infections
    Maria Siopi, Dimitrios Skliros, Paschalis Paranos, Nikoletta Koumasi, Emmanouil Flemetakis, Spyros Pournaras, Joseph Meletiadis, Graeme N. Forrest
    Clinical Microbiology Reviews.2024;[Epub]     CrossRef
  • Phage-Based Therapy in Combination with Antibiotics: A Promising Alternative against Multidrug-Resistant Gram-Negative Pathogens
    Cleo Anastassopoulou, Stefanos Ferous, Aikaterini Petsimeri, Georgia Gioula, Athanasios Tsakris
    Pathogens.2024; 13(10): 896.     CrossRef
  • Leveraging mathematical modeling framework to guide regimen strategy for phage therapy
    Zhiyuan Yu, Tiffany Luong, Selenne Banuelos, Andrew Sue, Hwayeon Ryu, Rebecca Segal, Dwayne R. Roach, Qimin Huang, Jaehee Kim
    PLOS Complex Systems.2024; 1(3): e0000015.     CrossRef
  • Phage therapy: a revolutionary shift in the management of bacterial infections, pioneering new horizons in clinical practice, and reimagining the arsenal against microbial pathogens
    Subhash Lal Karn, Mayank Gangwar, Rajesh Kumar, Satyanam Kumar Bhartiya, Gopal Nath
    Frontiers in Medicine.2023;[Epub]     CrossRef
  • A novel lytic phage exhibiting a remarkable in vivo therapeutic potential and higher antibiofilm activity against Pseudomonas aeruginosa
    Aliaa Abdelghafar, Amira El-Ganiny, Ghada Shaker, Momen Askoura
    European Journal of Clinical Microbiology & Infectious Diseases.2023; 42(10): 1207.     CrossRef
  • Phage-host-immune system dynamics in bacteriophage therapy: basic principles and mathematical models
    Dongwoo Chae
    Translational and Clinical Pharmacology.2023; 31(4): 167.     CrossRef
  • BACTERIOPHAGE M13 MODULATES THE SEPSIS-RELATED INFLAMMATORY RESPONSES AND ORGAN DAMAGE IN A CLP MODEL
    Arezou Rahimi, Sara Soudi, Saeid Vakilian, Fatemeh Jamshidi-Adegani, Majid Sadeghizadeh, Sulaiman Al-Hashmi
    Shock.2023; 59(3): 493.     CrossRef
  • Human Neutrophil Response to Pseudomonas Bacteriophage PAK_P1, a Therapeutic Candidate
    Dwayne R. Roach, Benoît Noël, Sylvie Chollet-Martin, Mathieu de Jode, Vanessa Granger, Laurent Debarbieux, Luc de Chaisemartin
    Viruses.2023; 15(8): 1726.     CrossRef
  • Translating phage therapy into the clinic: Recent accomplishments but continuing challenges
    Aleksandra Petrovic Fabijan, Jonathan Iredell, Katarzyna Danis-Wlodarczyk, Razieh Kebriaei, Stephen T. Abedon
    PLOS Biology.2023; 21(5): e3002119.     CrossRef
  • Phage therapy for hidradenitis suppurativa: a unique challenge and possible opportunity for personalized treatment of a complex, inflammatory disease
    Lene Bens, Sabrina I Green, Daan Jansen, Tom Hillary, Tine Vanhoutvin, Jelle Matthijnssens, João Sabino, Séverine Vermeire, An Van Laethem, Jeroen Wagemans, Rob Lavigne
    Clinical and Experimental Dermatology.2023; 48(11): 1221.     CrossRef
  • Determination of phage load and administration time in simulated occurrences of antibacterial treatments
    Steffen Plunder, Markus Burkard, Ulrich M. Lauer, Sascha Venturelli, Luigi Marongiu
    Frontiers in Medicine.2022;[Epub]     CrossRef
  • Phage therapy for pulmonary infections: lessons from clinical experiences and key considerations
    Georgia Mitropoulou, Angela Koutsokera, Chantal Csajka, Sylvain Blanchon, Alain Sauty, Jean-Francois Brunet, Christophe von Garnier, Grégory Resch, Benoit Guery
    European Respiratory Review.2022; 31(166): 220121.     CrossRef
  • Modification of the immune response by bacteriophages alters methicillin-resistant Staphylococcus aureus infection
    Tomoya Suda, Tomoko Hanawa, Mayuko Tanaka, Yasunori Tanji, Kazuhiko Miyanaga, Sanae Hasegawa-Ishii, Ken Shirato, Takako Kizaki, Takeaki Matsuda
    Scientific Reports.2022;[Epub]     CrossRef
  • Bacteriophage: A new therapeutic player to combat neutrophilic inflammation in chronic airway diseases
    Daniel R. Laucirica, Stephen M. Stick, Luke W. Garratt, Anthony Kicic
    Frontiers in Medicine.2022;[Epub]     CrossRef
  • Therapeutic Bacteriophages for Gram-Negative Bacterial Infections in Animals and Humans
    Panagiotis Zagaliotis, Jordyn Michalik-Provasek, Jason Gill, Thomas Walsh
    Pathogens and Immunity.2022; 7(2): 1.     CrossRef
  • Circulation of Fluorescently Labelled Phage in a Murine Model
    Zuzanna Kaźmierczak, Joanna Majewska, Magdalena Milczarek, Barbara Owczarek, Krystyna Dąbrowska
    Viruses.2021; 13(2): 297.     CrossRef
  • Clinical Pharmacology of Bacteriophage Therapy: A Focus on Multidrug-Resistant Pseudomonas aeruginosa Infections
    Dana Holger, Razieh Kebriaei, Taylor Morrisette, Katherine Lev, Jose Alexander, Michael Rybak
    Antibiotics.2021; 10(5): 556.     CrossRef
  • Characteristics of a Bacteriophage, vB_Kox_ZX8, Isolated From Clinical Klebsiella oxytoca and Its Therapeutic Effect on Mice Bacteremia
    Ping Li, Yangheng Zhang, Fuhua Yan, Xin Zhou
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Reapproaching Old Treatments: Considerations for PK/PD Studies on Phage Therapy for Bacterial Respiratory Infections
    Alan A. Schmalstig, Soha Freidy, Patrick O. Hanafin, Miriam Braunstein, Gauri G. Rao
    Clinical Pharmacology & Therapeutics.2021; 109(6): 1443.     CrossRef
  • A single dose of a virulent bacteriophage vB PaeP-SaPL, rescues bacteremic mice infected with multi drug resistant Pseudomonas aeruginosa
    Iqbal Ahmad Alvi, Muhammad Asif, Shafiq ur Rehman
    Virus Research.2021; 292: 198250.     CrossRef
  • Antiviral effect of a bacteriophage on murine norovirus replication via modulation of the innate immune response
    Lili Zhang, Chang Ma, Jie Liu, Khashayar Shahin, Xiang Hou, Lichang Sun, Heye Wang, Ran Wang
    Virus Research.2021; 305: 198572.     CrossRef
  • Bacteriophages as an Alternative Method for Control of Zoonotic and Foodborne Pathogens
    Mohammed Mijbas Mohammed Alomari, Marta Dec, Renata Urban-Chmiel
    Viruses.2021; 13(12): 2348.     CrossRef
  • Formulation strategies for bacteriophages to target intracellular bacterial pathogens
    Wei Yan, Parikshit Banerjee, Miao Xu, Subhankar Mukhopadhyay, Margaret Ip, Nicholas B. Carrigy, David Lechuga-Ballesteros, Kenneth Kin Wah To, Sharon S.Y. Leung
    Advanced Drug Delivery Reviews.2021; 176: 113864.     CrossRef
  • Characterization of a Novel Bacteriophage Henu2 and Evaluation of the Synergistic Antibacterial Activity of Phage-Antibiotics
    Xianghui Li, Tongxin Hu, Jiacun Wei, Yuhua He, Abualgasim Elgaili Abdalla, Guoying Wang, Yanzhang Li, Tieshan Teng
    Antibiotics.2021; 10(2): 174.     CrossRef
  • Therapeutic Perspectives and Mechanistic Insights of Phage Therapy in Allotransplantation
    Kenneth J. Dery, Andrzej Górski, Ryszard Międzybrodzki, Douglas G. Farmer, Jerzy W. Kupiec-Weglinski
    Transplantation.2021; 105(7): 1449.     CrossRef
  • How to kill Pseudomonas—emerging therapies for a challenging pathogen
    Luke N. Yaeger, Victoria E. Coles, Derek C. K. Chan, Lori L. Burrows
    Annals of the New York Academy of Sciences.2021; 1496(1): 59.     CrossRef
  • Bacteriophages and the Immune System
    Medeea Popescu, Jonas D. Van Belleghem, Arya Khosravi, Paul L. Bollyky
    Annual Review of Virology.2021; 8(1): 415.     CrossRef
  • Synergistic Killing and Re-Sensitization of Pseudomonas aeruginosa to Antibiotics by Phage-Antibiotic Combination Treatment
    Emily Engeman, Helen R. Freyberger, Brendan W. Corey, Amanda M. Ward, Yunxiu He, Mikeljon P. Nikolich, Andrey A. Filippov, Stuart D. Tyner, Anna C. Jacobs
    Pharmaceuticals.2021; 14(3): 184.     CrossRef
  • Pharmacokinetics and Pharmacodynamics of a Novel Virulent Klebsiella Phage Kp_Pokalde_002 in a Mouse Model
    Gunaraj Dhungana, Roshan Nepal, Madhav Regmi, Rajani Malla
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy
    Magdalena Podlacha, Łukasz Grabowski, Katarzyna Kosznik-Kawśnicka, Karolina Zdrojewska, Małgorzata Stasiłojć, Grzegorz Węgrzyn, Alicja Węgrzyn
    International Journal of Molecular Sciences.2021; 22(16): 8937.     CrossRef
  • A Review of Using Mathematical Modeling to Improve Our Understanding of Bacteriophage, Bacteria, and Eukaryotic Interactions
    Kathryn M. Styles, Aidan T. Brown, Antonia P. Sagona
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Impact of Frequent Administration of Bacteriophage on Therapeutic Efficacy in an A. baumannii Mouse Wound Infection Model
    Michael D. Rouse, Joshua Stanbro, Jessica A. Roman, Michelle A. Lipinski, Anna Jacobs, Biswaijt Biswas, James Regeimbal, Matthew Henry, Michael G. Stockelman, Mark P. Simons
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Phage therapy efficacy: a review of the last 10 years of preclinical studies
    Luís D. R. Melo, Hugo Oliveira, Diana P. Pires, Krystyna Dabrowska, Joana Azeredo
    Critical Reviews in Microbiology.2020; 46(1): 78.     CrossRef
  • RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa
    Iqbal Ahmad Alvi, Muhammad Asif, Rabia Tabassum, Rehan Aslam, Zaigham Abbas, Shafiq ur Rehman
    Archives of Virology.2020; 165(6): 1289.     CrossRef
  • Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections
    Patrick R. Secor, Elizabeth B. Burgener, M. Kinnersley, Laura K. Jennings, Valery Roman-Cruz, Medeea Popescu, Jonas D. Van Belleghem, Naomi Haddock, Conner Copeland, Lia A. Michaels, Christiaan R. de Vries, Qingquan Chen, Julie Pourtois, Travis J. Wheeler
    Frontiers in Immunology.2020;[Epub]     CrossRef
  • Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies
    Mihnea R. Mangalea, Breck A. Duerkop, Karen M. Ottemann
    Infection and Immunity.2020;[Epub]     CrossRef
  • Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review
    Krystyna Dąbrowska
    Medicinal Research Reviews.2019; 39(5): 2000.     CrossRef
  • Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies
    Krystyna Dąbrowska, Stephen T. Abedon
    Microbiology and Molecular Biology Reviews.2019;[Epub]     CrossRef
  • Biological challenges of phage therapy and proposed solutions: a literature review
    Katherine M Caflisch, Gina A Suh, Robin Patel
    Expert Review of Anti-infective Therapy.2019; 17(12): 1011.     CrossRef
  • Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System
    Jonas D. Van Belleghem, Krystyna Dąbrowska, Mario Vaneechoutte, Jeremy J. Barr, Paul L. Bollyky
    Viruses.2018; 11(1): 10.     CrossRef
  • Proof-of-Principle Study in a Murine Lung Infection Model of Antipseudomonal Activity of Phage PEV20 in a Dry-Powder Formulation
    Rachel Yoon Kyung Chang, Ke Chen, Jiping Wang, Martin Wallin, Warwick Britton, Sandra Morales, Elizabeth Kutter, Jian Li, Hak-Kim Chan
    Antimicrobial Agents and Chemotherapy.2018;[Epub]     CrossRef
  • Challenges and Promises for Planning Future Clinical Research Into Bacteriophage Therapy Against Pseudomonas aeruginosa in Cystic Fibrosis. An Argumentative Review
    Martina Rossitto, Ersilia V. Fiscarelli, Paola Rosati
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics
    Ewa Jończyk-Matysiak, Beata Weber-Dąbrowska, Barbara Owczarek, Ryszard Międzybrodzki, Marzanna Łusiak-Szelachowska, Norbert Łodej, Andrzej Górski
    Viruses.2017; 9(6): 150.     CrossRef
  • Modeling the synergistic elimination of bacteria by phage and the innate immune system
    Chung Yin (Joey) Leung, Joshua S. Weitz
    Journal of Theoretical Biology.2017; 429: 241.     CrossRef
  • Characterization and complete genome sequence analysis of two Myoviral bacteriophages infecting clinical carbapenem‐resistant Acinetobacter baumannii isolates
    J. Jeon, R. D'Souza, N. Pinto, C.‐M. Ryu, J. Park, D. Yong, K. Lee
    Journal of Applied Microbiology.2016; 121(1): 68.     CrossRef
  • Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections
    Diana P. Pires, Diana Vilas Boas, Sanna Sillankorva, Joana Azeredo, S. P. Goff
    Journal of Virology.2015; 89(15): 7449.     CrossRef
  • The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes
    Ewa Jończyk-Matysiak, Marzanna Łusiak-Szelachowska, Marlena Kłak, Barbara Bubak, Ryszard Międzybrodzki, Beata Weber-Dąbrowska, Maciej Żaczek, Wojciech Fortuna, Paweł Rogóż, Sławomir Letkiewicz, Krzysztof Szufnarowski, Andrzej Górski
    Journal of Immunology Research.2015; 2015: 1.     CrossRef
  • Bacteriophages and Biofilms
    David Harper, Helena Parracho, James Walker, Richard Sharp, Gavin Hughes, Maria Werthén, Susan Lehman, Sandra Morales
    Antibiotics.2014; 3(3): 270.     CrossRef
  • Phage fitness may help predict phage therapy efficacy
    Heather M Lindberg, Kurt A McKean, Ing-Nang Wang
    Bacteriophage.2014; 4(4): e964081.     CrossRef
  • Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment
    Mohamed Elbreki, R. Paul Ross, Colin Hill, Jim O'Mahony, Olivia McAuliffe, Aidan Coffey
    Journal of Viruses.2014; 2014: 1.     CrossRef
  • Phage Therapy Is Effective against Infection by Mycobacterium ulcerans in a Murine Footpad Model
    Gabriela Trigo, Teresa G. Martins, Alexandra G. Fraga, Adhemar Longatto-Filho, António G. Castro, Joana Azeredo, Jorge Pedrosa, Christian Johnson
    PLoS Neglected Tropical Diseases.2013; 7(4): e2183.     CrossRef
  • Use of bacteriophages in the treatment ofPseudomonas aeruginosainfections
    James Soothill
    Expert Review of Anti-infective Therapy.2013; 11(9): 909.     CrossRef
Phenotypic Characterization and Genomic Analysis of the Shigella sonnei Bacteriophage SP18
Kyoung-Ho Kim , Ho-Won Chang , Young-Do Nam , Seong Woon Roh , Jin-Woo Bae
J. Microbiol. 2010;48(2):213-222.   Published online May 1, 2010
DOI: https://doi.org/10.1007/s12275-010-0055-4
  • 242 View
  • 1 Download
  • 12 Crossref
AbstractAbstract PDF
A novel bacteriophage that infects Shigella sonnei was isolated from the Gap River in Korea, and its phenotypic and genomic characteristics were investigated. The virus, called SP18, showed morphology characteristic of the family Myoviridae, and phylogenetic analysis of major capsid gene (gp23) sequences classified it as a T4-like phage. Based on host spectrum analysis, it is lytic to S. sonnei, but not to Shigella flexneri, Shigella boydii or members of the genera Escherichia and Salmonella. Pyrosequencing of the SP18 bacteriophage genome revealed a 170-kb length sequence. In total, 286 ORFs and 3 tRNA genes were identified, and 259 ORFs showed similarity (BLASTP e-value<0.001) to genes of other bacteriophages. The results from comparative genomic analysis indicated that the enterophage JS98, isolated from human stool, is the closest relative of SP18. Based on phylogenetic analysis of gp23 protein-coding sequences, dot plot comparison and BLASTP analysis of genomes, SP18 and JS98 appear to be closely related to T4-even phages. However, several insertions, deletions, and duplications indicate differences between SP18 and JS98. Comparison of duplicated gp24 genes and the soc gene showed that duplication events are responsible for the differentiation and evolution of T4-like bacteriophages.

Citations

Citations to this article as recorded by  
  • Two Novel Yersinia pestis Bacteriophages with a Broad Host Range: Potential as Biocontrol Agents in Plague Natural Foci
    Haixiao Jin, Youhong Zhong, Yiting Wang, Chuanyu Zhang, Jin Guo, Xiaona Shen, Cunxiang Li, Ying Huang, Haoming Xiong, Peng Wang, Wei Li
    Viruses.2022; 14(12): 2740.     CrossRef
  • Isolation, characterization, and genomic analysis of the novel T4-like bacteriophage ΦCJ20
    Jaegon Kim, Jong Pyo Chae, Gyeong-Hwuii Kim, Jae-Won Kim, Na-Gyeong Lee, Jun-Ok Moon, Sung-Sik Yoon
    Food Science and Biotechnology.2021; 30(5): 735.     CrossRef
  • Molecular Characteristics of Novel Phage vB_ShiP-A7 Infecting Multidrug-Resistant Shigella flexneri and Escherichia coli, and Its Bactericidal Effect in vitro and in vivo
    Jing Xu, Ruiyang Zhang, Xinyan Yu, Xuesen Zhang, Genyan Liu, Xiaoqiu Liu
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Ecology, Structure, and Evolution of Shigella Phages
    Sundharraman Subramanian, Kristin N. Parent, Sarah M. Doore
    Annual Review of Virology.2020; 7(1): 121.     CrossRef
  • Genomic and Proteomic Characterizations of Sfin-1, a Novel Lytic Phage Infecting Multidrug-Resistant Shigella spp. and Escherichia coli C
    SK Tousif Ahamed, Banibrata Roy, Utpal Basu, Shanta Dutta, A. N. Ghosh, Boudhayan Bandyopadhyay, Nabanita Giri
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • K5 Capsule and Lipopolysaccharide Are Important in Resistance to T4 Phage Attack in Probiotic E. coli Strain Nissle 1917
    Manonmani Soundararajan, Rudolf von Bünau, Tobias A. Oelschlaeger
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Studies on Shigella sonnei-specific bacteriophage isolated from a slaughterhouse
    Min-Jeong Lee, HyungWoo Kim, WooJu Kim, JinUk Jang, JeongUk Seo, KyoungMin Gwak, Jinjong Myoung, Mi-Kyung Park
    Korean Journal of Food Preservation.2018; 25(3): 390.     CrossRef
  • Bacteriophage application to control the contaminated water with Shigella
    Jin Woo Jun, Sib Sankar Giri, Hyoun Joong Kim, Sae Kil Yun, Cheng Chi, Ji Young Chai, Byeong Chun Lee, Se Chang Park
    Scientific Reports.2016;[Epub]     CrossRef
  • Isolation and Comparative Genomic Analysis of T1-Like Shigella Bacteriophage pSf-2
    Jin Woo Jun, Hyoun Joong Kim, Sae Kil Yun, Ji Young Chai, Byeong Chun Lee, Se Chang Park
    Current Microbiology.2015;[Epub]     CrossRef
  • Isolation and development of bioluminescent reporter phages for bacterial dysentery
    D. A. Schofield, D. J. Wray, I. J. Molineux
    European Journal of Clinical Microbiology & Infectious Diseases.2015; 34(2): 395.     CrossRef
  • Bacteriophages for managingShigellain various clinical and non-clinical settings
    Lawrence D. Goodridge
    Bacteriophage.2013; 3(1): e25098.     CrossRef
  • Comparative genomic analysis of bacteriophage EP23 infecting Shigella sonnei and Escherichia coli
    Ho-Won Chang, Kyoung-Ho Kim
    The Journal of Microbiology.2011; 49(6): 927.     CrossRef
An Examination of the Bacteriophages and Bacteria of the Namib Desert
Eric Prestel , Sylvie Salamitou , Michael S. DuBow
J. Microbiol. 2008;46(4):364-372.   Published online August 31, 2008
DOI: https://doi.org/10.1007/s12275-008-0007-4
  • 230 View
  • 0 Download
  • 56 Crossref
AbstractAbstract PDF
Bacteria and their viruses (called bacteriophages, or phages), have been found in virtually every ecological niche on Earth. Arid regions, including their most extreme form called deserts, represent the single largest ecosystem type on the Earth''s terrestrial surface. The Namib desert is believed to be the oldest (80 million years) desert. We report here an initial analysis of bacteriophages isolated from the Namib desert using a combination of electron microscopy and genomic approaches. The virus-like particles observed by electron microscopy revealed 20 seemingly different phage-like morphologies and sizes belonging to the Myoviridae and Siphoviridae families of tailed phages. Pulsed-field gel electrophoresis revealed a majority of phage genomes of 55~65 kb in length, with genomes of approximately 200, 300, and 350 kb also observable. Sample sequencing of cloned phage DNA fragments revealed that approximately 50% appeared to be of bacterial origin. Of the remaining DNA sequences, approximately 50% displayed no significant match to any sequence in the databases. The majority of the 16S rDNA sequences amplified from DNA extracted from the sand displayed considerable (94~98%) homology to members of the Firmicutes, and in particular to members of the genus Bacillus, though members of the Bacteroidetes, Planctomycetes, Chloroflexi, and delta-Proteobacteria groups were also observed.

Citations

Citations to this article as recorded by  
  • Temperature as a Driver of Phage Ecology and Evolution
    Samuel T.E. Greenrod, Tobias E. Hector, Michael Blazanin, Daniel Cazares, Kayla C. King
    Annual Review of Microbiology .2025; 79(1): 497.     CrossRef
  • Bacterial Diversity Profiles of Desert Sand and Salt Crusts from the Gran Desierto de Altar, Sonora, Mexico
    Cristal Ramos-Madrigal, Esperanza Martínez-Romero, Yunuen Tapia-Torres, Luis E. Servín-Garcidueñas
    Diversity.2024; 16(12): 745.     CrossRef
  • Revealing human impact on natural ecosystems through soil bacterial DNA sampled from an archaeological site
    Stéphane Boivin, Amélia Bourceret, Kenji Maurice, Liam Laurent‐Webb, Tomáš Figura, Julie Bourillon, Jérôme Nespoulous, Odile Domergue, Clémence Chaintreuil, Hassan Boukcim, Marc‐André Selosse, Zbigniew Fiema, Emmanuel Botte, Laila Nehme, Marc Ducousso
    Environmental Microbiology.2024;[Epub]     CrossRef
  • Biocrust succession significantly influences soil virus composition and alpha diversity in a sandy desert
    Yang Zhao, Yu-Chao Lian, Yan-Qiao Zhao, Wen-Wen Xu, Yi-Xue Zhao, Zhi-Shan Zhang
    Applied Soil Ecology.2024; 195: 105255.     CrossRef
  • Bacillus subtilis Phages Related to SIOphi from Desert Soils of the Southwest United States
    Leigh H. Magness, Véronique A. Delesalle, Albert C. Vill, Madison S. Strine, Brianne E. Chaudhry, Katherine B. Lichty, Alexandra A. Guffey, Jenna M. DeCurzio, Greg P. Krukonis
    PHAGE.2023; 4(4): 165.     CrossRef
  • Comparative Genomics of Bacillus subtilis Phages Related to phiNIT1 from Desert Soils of the Southwest United States
    Albert C. Vill, Véronique A. Delesalle, Leigh H. Magness, Brianne E. Chaudhry, Katherine B. Lichty, Madison S. Strine, Alexandra A. Guffey, Jenna M. DeCurzio, Greg P. Krukonis
    PHAGE.2023; 4(4): 173.     CrossRef
  • A Novel Subcluster of Closely Related Bacillus Phages with Distinct Tail Fiber/Lysin Gene Combinations
    Rachel E. Loney, Véronique A. Delesalle, Brianne E. Chaudry, Megan Czerpak, Alexandra A. Guffey, Leo Goubet-McCall, Michael McCarty, Madison S. Strine, Natalie T. Tanke, Albert C. Vill, Greg P. Krukonis
    Viruses.2023; 15(11): 2267.     CrossRef
  • Viruses Ubiquity and Diversity in Atacama Desert Endolithic Communities
    Leora Busse, Mike Tisza, Jocelyne DiRuggiero
    Viruses.2022; 14(9): 1983.     CrossRef
  • Comparative Genomics of Six Lytic Bacillus subtilis Phages from the Southwest United States
    Albert C. Vill, Véronique A. Delesalle, Brianne E. Tomko, Katherine B. Lichty, Madison S. Strine, Alexandra A. Guffey, Elizabeth A. Burton, Natalie T. Tanke, Greg P. Krukonis
    PHAGE.2022; 3(3): 171.     CrossRef
  • Complete Genome Sequences of Two Temperate Bacillus subtilis Phages Isolated at Tumamoc Hill Desert Laboratory
    Greg P. Krukonis, Amanda K. Kemp, Katie F. Storrie, Vivian R. Chavira, Hayden W. Lantrip, Victoria D. Perez, Desiree A. Reyes, Julian A. Truax, Rachel Loney, Véronique A. Delesalle, Simon Roux
    Microbiology Resource Announcements.2022;[Epub]     CrossRef
  • Response of soil bacterial community to agricultural reclamation in the Tengger desert, northwestern China
    Lin Ye, Xue Wu, Cuinan Wu, Yi Zhang, Lili Meng, Encai Bao, Kai Cao
    Applied Soil Ecology.2022; 169: 104189.     CrossRef
  • Partners to survive: Hoffmannseggia doellii root‐associated microbiome at the Atacama Desert
    Jonathan E. Maldonado, Alexis Gaete, Dinka Mandakovic, Constanza Aguado‐Norese, Melissa Aguilar, Rodrigo A. Gutiérrez, Mauricio González
    New Phytologist.2022; 234(6): 2126.     CrossRef
  • An Appraisal of Bacteriophage Isolation Techniques from Environment
    Aparna Nair, Gaurav S. Ghugare, Krishna Khairnar
    Microbial Ecology.2022; 83(3): 519.     CrossRef
  • Response of soil viral communities to land use changes
    Hu Liao, Hu Li, Chen-Song Duan, Xin-Yuan Zhou, Qiu-Ping Luo, Xin-Li An, Yong-Guan Zhu, Jian-Qiang Su
    Nature Communications.2022;[Epub]     CrossRef
  • Do bacterial viruses affect framboid-like mineral formation?
    Paweł Działak, Marcin D. Syczewski, Kamil Kornaus, Mirosław Słowakiewicz, Łukasz Zych, Andrzej Borkowski
    Biogeosciences.2022; 19(18): 4533.     CrossRef
  • Plant ecological genomics at the limits of life in the Atacama Desert
    Gil Eshel, Viviana Araus, Soledad Undurraga, Daniela C. Soto, Carol Moraga, Alejandro Montecinos, Tomás Moyano, Jonathan Maldonado, Francisca P. Díaz, Kranthi Varala, Chase W. Nelson, Orlando Contreras-López, Henrietta Pal-Gabor, Tatiana Kraiser, Gabriela
    Proceedings of the National Academy of Sciences.2021;[Epub]     CrossRef
  • ISOLATION AND PHYSICOCHEMICAL CHARACTERIZATION OF BRUCELLA PHAGES
    A.Y. Shaheen, A.A. Sheikh, M Rabbani, W Shehzad, Z Abbas, M Maqbool
    The Journal of Animal and Plant Sciences.2021; 31(5): 1277.     CrossRef
  • Abundance and Diversity of Phages, Microbial Taxa, and Antibiotic Resistance Genes in the Sediments of the River Ganges Through Metagenomic Approach
    Narender Kumar, Amit Kumar Gupta, Sarabjeet Kour Sudan, Deepika Pal, Vinay Randhawa, Girish Sahni, Shanmugam Mayilraj, Manoj Kumar
    Microbial Drug Resistance.2021; 27(10): 1336.     CrossRef
  • Diverse Viruses Carrying Genes for Microbial Extremotolerance in the Atacama Desert Hyperarid Soil
    Yunha Hwang, Janina Rahlff, Dirk Schulze-Makuch, Michael Schloter, Alexander J. Probst, Joanne B. Emerson
    mSystems.2021;[Epub]     CrossRef
  • Tomato Cultivars With Variable Tolerances to Water Deficit Differentially Modulate the Composition and Interaction Patterns of Their Rhizosphere Microbial Communities
    Alexis Gaete, Rodrigo Pulgar, Christian Hodar, Jonathan Maldonado, Leonardo Pavez, Denisse Zamorano, Claudio Pastenes, Mauricio González, Nicolás Franck, Dinka Mandakovic
    Frontiers in Plant Science.2021;[Epub]     CrossRef
  • Effects of precipitation changes on soil bacterial community composition and diversity in the Junggar desert of Xinjiang, China
    Ke Wu, Wenxuan Xu, Weikang Yang
    PeerJ.2020; 8: e8433.     CrossRef
  • Microbiomics of Namib Desert habitats
    D. A. Cowan, D. W. Hopkins, B. E. Jones, G. Maggs-Kölling, R. Majewska, J.-B. Ramond
    Extremophiles.2020; 24(1): 17.     CrossRef
  • Application of Adaptive Evolution to Improve the Stability of Bacteriophages during Storage
    Kelvin K. Kering, Xiaoxu Zhang, Raphael Nyaruaba, Junping Yu, Hongping Wei
    Viruses.2020; 12(4): 423.     CrossRef
  • Abiotic and plant gender effects on the structure and function of soil microbial communities associated with Acanthosicyos horridus (Nara) in the Namibian sand-dune desert ecosystem
    Chen Sherman, Eugene Marais, Gillian Maggs-Kölling, Jonathan Adams, Yosef Steinberger
    Journal of Arid Environments.2019; 163: 50.     CrossRef
  • Virus-Like Particle Production in Atmospheric Eubacteria Isolates
    Nuria Teigell-Perez, Cristina Gonzalez-Martin, Basilio Valladares, David J. Smith, Dale W. Griffin
    Atmosphere.2019; 10(7): 417.     CrossRef
  • Soil bacterial community associated with the dioecious Acanthosicyos horridus in the Namib Desert
    Adrian Unc, Gillian Maggs-Kölling, Eugene Marais, Chen Sherman, Tirza Doniger, Yosef Steinberger
    Biology and Fertility of Soils.2019; 55(4): 393.     CrossRef
  • Examination of the Bacterial Biodiversity of Coastal Eroded Surface Soils from the Padza de Dapani (Mayotte Island)
    Jorge R. Osman, Gustavo Fernandes, Christophe Regeard, Chloé Jaubert, Michael S. DuBow
    Geomicrobiology Journal.2018; 35(5): 355.     CrossRef
  • Large Blooms of Bacillales ( Firmicutes ) Underlie the Response to Wetting of Cyanobacterial Biocrusts at Various Stages of Maturity
    Ulas Karaoz, Estelle Couradeau, Ulisses Nunes da Rocha, Hsiao-Chien Lim, Trent Northen, Ferran Garcia-Pichel, Eoin L. Brodie, Mark J. Bailey
    mBio.2018;[Epub]     CrossRef
  • Microbiome analysis and bacterial isolation from Lejía Lake soil in Atacama Desert
    Dinka Mandakovic, Jonathan Maldonado, Rodrigo Pulgar, Pablo Cabrera, Alexis Gaete, Viviana Urtuvia, Michael Seeger, Verónica Cambiazo, Mauricio González
    Extremophiles.2018; 22(4): 665.     CrossRef
  • Desiccation- and Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments
    Steffi Genderjahn, Mashal Alawi, Kai Mangelsdorf, Fabian Horn, Dirk Wagner
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience
    Dinka Mandakovic, Claudia Rojas, Jonathan Maldonado, Mauricio Latorre, Dante Travisany, Erwan Delage, Audrey Bihouée, Géraldine Jean, Francisca P. Díaz, Beatriz Fernández-Gómez, Pablo Cabrera, Alexis Gaete, Claudio Latorre, Rodrigo A. Gutiérrez, Alejandro
    Scientific Reports.2018;[Epub]     CrossRef
  • An Insight into Phage Diversity at Environmental Habitats using Comparative Metagenomics Approach
    Krupa Parmar, Nishant Dafale, Rajesh Pal, Hitesh Tikariha, Hemant Purohit
    Current Microbiology.2018; 75(2): 132.     CrossRef
  • Metaviromes of Extracellular Soil Viruses along a Namib Desert Aridity Gradient
    Olivier Zablocki, Evelien M. Adriaenssens, Aline Frossard, Mary Seely, Jean-Baptiste Ramond, Don Cowan
    Genome Announcements.2017;[Epub]     CrossRef
  • Namib Desert edaphic bacterial, fungal and archaeal communities assemble through deterministic processes but are influenced by different abiotic parameters
    Riegardt M. Johnson, Jean-Baptiste Ramond, Eoin Gunnigle, Mary Seely, Don A. Cowan
    Extremophiles.2017; 21(2): 381.     CrossRef
  • Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils
    Li-Li Han, Dan-Ting Yu, Li-Mei Zhang, Ju-Pei Shen, Ji-Zheng He
    Scientific Reports.2017;[Epub]     CrossRef
  • Virome Assembly and Annotation: A Surprise in the Namib Desert
    Uljana Hesse, Peter van Heusden, Bronwyn M. Kirby, Israel Olonade, Leonardo J. van Zyl, Marla Trindade
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Intriguing Interaction of Bacteriophage-Host Association: An Understanding in the Era of Omics
    Krupa M. Parmar, Saurabh L. Gaikwad, Prashant K. Dhakephalkar, Ramesh Kothari, Ravindra Pal Singh
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Unique community structure of viruses in a glacier soil of the Tianshan Mountains, China
    Li-Li Han, Dan-Ting Yu, Li-Mei Zhang, Jun-Tao Wang, Ji-Zheng He
    Journal of Soils and Sediments.2017; 17(3): 852.     CrossRef
  • Analysis of the First Temperate Broad Host Range Brucellaphage (BiPBO1) Isolated from B. inopinata
    Jens A. Hammerl, Cornelia Göllner, Sascha Al Dahouk, Karsten Nöckler, Jochen Reetz, Stefan Hertwig
    Frontiers in Microbiology.2016;[Epub]     CrossRef
  • Metaviromics of Namib Desert Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA Viruses
    Evelien Adriaenssens, Leonardo Van Zyl, Don Cowan, Marla Trindade
    Viruses.2016; 8(1): 14.     CrossRef
  • Diversity and Ecology of Viruses in Hyperarid Desert Soils
    Olivier Zablocki, Evelien M. Adriaenssens, Don Cowan, F. E. Löffler
    Applied and Environmental Microbiology.2016; 82(3): 770.     CrossRef
  • Microbial ecology of hot desert edaphic systems
    Thulani P. Makhalanyane, Angel Valverde, Eoin Gunnigle, Aline Frossard, Jean-Baptiste Ramond, Don A. Cowan
    FEMS Microbiology Reviews.2015; 39(2): 203.     CrossRef
  • The influence of surface soil physicochemistry on the edaphic bacterial communities in contrasting terrain types of theCentralNamibDesert
    S. Gombeer, J.‐B. Ramond, F. D. Eckardt, M. Seely, D. A. Cowan
    Geobiology.2015; 13(5): 494.     CrossRef
  • Metagenomic analysis of the viral community in Namib Desert hypoliths
    Evelien M. Adriaenssens, Lonnie Van Zyl, Pieter De Maayer, Enrico Rubagotti, Ed Rybicki, Marla Tuffin, Don A. Cowan
    Environmental Microbiology.2015; 17(2): 480.     CrossRef
  • Environmental bacteriophages: viruses of microbes in aquatic ecosystems
    Télesphore Sime-Ngando
    Frontiers in Microbiology.2014;[Epub]     CrossRef
  • The bacteria and bacteriophages from a Mesquite Flats site of the Death Valley desert
    Eric Prestel, Christophe Regeard, Sylvie Salamitou, Julie Neveu, Michael S. DuBow
    Antonie van Leeuwenhoek.2013; 103(6): 1329.     CrossRef
  • Viruses in the desert: a metagenomic survey of viral communities in four perennial ponds of the Mauritanian Sahara
    Laura Fancello, Sébatien Trape, Catherine Robert, Mickaël Boyer, Nikolay Popgeorgiev, Didier Raoult, Christelle Desnues
    The ISME Journal.2013; 7(2): 359.     CrossRef
  • Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert
    Francesca Stomeo, Angel Valverde, Stephen B. Pointing, Christopher P. McKay, Kimberley A. Warren-Rhodes, Marla I. Tuffin, Mary Seely, Don A. Cowan
    Extremophiles.2013; 17(2): 329.     CrossRef
  • Abiotic Factors Shape Microbial Diversity in Sonoran Desert Soils
    David R. Andrew, Robert R. Fitak, Adrian Munguia-Vega, Adriana Racolta, Vincent G. Martinson, Katerina Dontsova
    Applied and Environmental Microbiology.2012; 78(21): 7527.     CrossRef
  • A Novel Bacteriophage Morphotype with a Ribbon-like Structure at the Tail Extremity
    Eric Prestel, Christophe Regeard, James Andrews, Philippe Oger, Michael S. DuBow
    Research Journal of Microbiology.2012; 7(1): 75.     CrossRef
  • A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah)
    Susana O.L. Direito, Pascale Ehrenfreund, Andries Marees, Martijn Staats, Bernard Foing, Wilfred F.M. Röling
    International Journal of Astrobiology.2011; 10(3): 191.     CrossRef
  • Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts
    Julie Neveu, Christophe Regeard, Michael S. DuBow
    Applied Microbiology and Biotechnology.2011; 91(3): 635.     CrossRef
  • Mineral and Bacterial Diversities of Desert Sand Grains from South-East Morocco
    Maxime Gommeaux, Mohamed Barakat, Gilles Montagnac, Richard Christen, François Guyot, Thierry Heulin
    Geomicrobiology Journal.2010; 27(1): 76.     CrossRef
  • Occurrence of Vibrio parahaemolyticus and Its Specific Phages from Shrimp Ponds in East Coast of India
    K. M. Alagappan, B. Deivasigamani, S. T. Somasundaram, S. Kumaran
    Current Microbiology.2010; 61(4): 235.     CrossRef
  • Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient
    Ami Bachar, Ashraf Al-Ashhab, M. Ines M. Soares, Menachem Y. Sklarz, Roey Angel, Eugene D. Ungar, Osnat Gillor
    Microbial Ecology.2010; 60(2): 453.     CrossRef
  • Current insights into phage biodiversity and biogeography
    Rebecca Vega Thurber
    Current Opinion in Microbiology.2009; 12(5): 582.     CrossRef
Development of a Simple Cell Lysis Method for Recombinant DNA Using Bacteriophage Lambda Lysis Genes
Boyun Jang , Yuna Jung , Dongbin Lim
J. Microbiol. 2007;45(6):593-596.
DOI: https://doi.org/2602 [pii]
  • 174 View
  • 0 Download
AbstractAbstract PDF
In this study, we describe the development of a simple and efficient method for cell lysis via the insertion of a bacteriophage lambda lysis gene cluster into the pET22b expression vector in the following order; the T7 promoter, a gene for a target protein intended for production, Sam7 and R. This insertion of R and Sam7 into pET22b exerted no detrimental effects on cellular growth or the production of a target protein. The induction of the T7 promoter did not in itself result in the autolysis of cells in culture but the harvested cells were readily broken by freezing and thawing. We compared the efficiency of the cell lysis technique by freezing and thawing to that observed with sonication, and determined that both methods completely disintegrated the cells and released proteins into the solution. With our modification of pET22b, the lysis of cells became quite simple, efficient, and reliable. This strategy may prove useful for a broad variety of applications, particularly in experiments requiring extensive cell breakage, including library screening and culture condition exploration, in addition to protein purification.
Isolation and Characterization of the Smallest Bacteriophage P4 Derivatives Packaged into P4-Size Head in Bacteriophage P2-P4 System
Kyoung-Jin Kim , Jaeho Song
J. Microbiol. 2006;44(5):530-536.
DOI: https://doi.org/2444 [pii]
  • 212 View
  • 0 Download
AbstractAbstract PDF
Bacteriophage P4, a satellite phage of coliphage P2, is a very useful experimental tool for the study of viral capsid assembly and cos-cleavage. For an in vitro cos-cleavage reaction study of the P2-P4 system, new shortened and selectable markers containing P4 derivative plasmids were designed as a substrate molecules. They were constructed by swapping the non-essential segment of P4 DNA for either the kanamycin resistance (kmr) gene or the ampicillin resistance (apr) gene. The size of the genomes of the resulting markers were 82% (P4 ash8 delRI:: kmr) and 79% (P4 ash8 delRI:: apr) of the wild type P4 genome. To determine the lower limit of genome size that could be packaged into the small P4-size head, these shortened P4 plasmids were converted to phage particles with infection of the helper phage P2. The conversion of plasmid P4 derivatives to bacteriophage particles was verified by the heat stability test and the burst size determination experiment. CsCl buoyant equilibrium density gradient experiments confirmed not only the genome size of the viable phage form of shortened P4 derivatives, but also their packaging into the small P4-size head. P4 ash8 delRI:: apr turned out to be the smallest P4 genome that can be packaged into P4-sized head.
Purification of Filamentous Bacteriophage M13 by Expanded Bed Anion Exchange Chromatography
Tau Chuan Ling , Chee Kin Loong , Wen Siang Tan , Beng Ti Tey , Wan Mohammad Wan Abdullah , Arbakariya Ariff
J. Microbiol. 2004;42(3):228-232.
DOI: https://doi.org/2084 [pii]
  • 199 View
  • 0 Download
AbstractAbstract PDF
In this paper, we investigated the development of a simplified and rapid primary capture step for the recovery of M13 bacteriophage from particulate-containing feedstock. M13 bacteriophage, carrying an insert, was propagated and subsequently purified by the application of both conventional multiple steps and expanded bed anion exchange chromatography. In the conventional method, precipitation was conducted with PEG/NaCl, and centrifugation was also performed. In the single step expanded bed anion exchange adsorption, UpFront FastLine^TM 20 (20 mm i.d.) from UpFront Chromatography was used as the contactor, while 54 ml (H_o=15cm) of STREAMLINE DEAE (r=1.2 g/cm^3) from Amersham Pharmacia Biotechnology was used as the anion exchanger. The performance of the two methods were evaluated, analysed, and compared. It was demonstrated that the purification of the M13 bacteriophage, using expanded bed anion exchange adsorption, yielded the higher recovery percentage, at 82.86%. The conventional multiple step method yielded the lower recovery percentage, 36.07%. The generic application of this integrated technique has also been assessed.
An Analysis of the Arm-type Site Binding Domain of Bacteriophage γ Integrase
Cho , Eun Hee
J. Microbiol. 1995;33(2):165-170.
  • 190 View
  • 0 Download
AbstractAbstract PDF
The 356 amino acid long lambda integrase protein of bacteriophage λ constains two autonomous DNA binding domains with distinct sequence specificities. The amino terminal domain of integrase is implicated to bind to the arm-type sequences and the carboxyl domain interacts with the coretype sequencess. As a first step to understand the molecular mechanism of the integrase-DNA interaction at the arm-type site, the int(am)94 gene carrying an amber mutation at the 94th codon of the int was cloned under the control of the P_tac promoter and the lacI^q gene. The Int(am)94 mutant protein of amino terminal 93 amino acid residues can be produced at high level from a suppressor free strain harboring the plasmid pInt(am)94. The arm-type binding activity of Int(am)94 were measured in vivo and in vitro. A comparison of the arm-type binding properties of the wild-type integrase and the truncated Int(am)94 mutant indicated that the truncated fragment containing 93 amino acid residues carry all the determinants for DNA binding at the arm-type sites.
Characterization of a Phage Library Displaying Random 22mer Peptides
Lee, Seung Joo , Lee, Jeong Hwan , Brian K. Kay , Gideon Dreyfuss , Park, Yong Keun , Kim, Jeong Kook
J. Microbiol. 1997;35(4):347-353.
  • 185 View
  • 0 Download
AbstractAbstract PDF
We have characterized a phage library displaying random 22mer peptides which were produced as N-terminal fusions to the pIII coat protein of M13 filamentous phages. Among the sixty phages randomly picked from the library, 25 phages had the 22mer peptide inserts. The DNA sequence analysis of the 25 inserts showed the following results: first, each nucleotide was represented almost equally at each codon position except that there were some biases toward G bases at the first position of the codons. Secondly, the expected 47 sense codons were represented. The deduced amino acid sequences of the 25 inserts were analyzed to examine its diversity. Glycine and glutamate were the two most overrepresented residues above the expected value, whereas cysteine and threonine residues were underrepresented. The range of dicersity in dipeptide sequences showed that the amino acid residues were randomly distributed along the peptide insert. Acidic, basic, polar, and nonpolar amino acid residues were represented to the extent expected at most positions of the peptide inserts. The predicted isoelectric points and hydropathy indices of the 25 peptides showed that a variety of the peptide were represented in the library. These results indicate that this phage display library could be useful in fiuding ligands for a broad spectrum of receptors by affinity screening.
Characterization and Identification of the Bacteriophage P4 Mutant Suppressin sir Mutations of Bacteriophage P2
Kim, Kyoung Jin , Sunshine, Melvin G. , Six, Erich W.
J. Microbiol. 1998;36(4):262-265.
  • 180 View
  • 0 Download
AbstractAbstract PDF
Bacteriophage P4 ost1 was isolated as a suppressor mutant of P2 sir3 and identified by restriction enzyme site analysis. The mutant DNA turned out to be an imperfect P4 trimer containing deletions. It was suggested that the deletion resulted from int-mediated site-specific recombination. CsCl equilibrium density gradient experiment confirmed the genome size of P4 ostl.
Construction of a Hexapeptide Library using Phage Display for Bio-panning
Cho, Won Hee , Yoo, Seung Ku
J. Microbiol. 1999;37(2):97-101.
  • 198 View
  • 0 Download
AbstractAbstract PDF
Random hexapeptide library on the surface of filamentous bacteriophage was constructed using the SurfZAP vector. The size of the library was approximately 105. The peptide insert was flanked by two cysteines to constrain the peptide structure with a disulfide bond. This library was screened for the topoisomerase II binding peptide. Dramatic enrichment of the fusion phage over the VCS M13 helper phage was demonstrated by bio-panning affinity selection.

Journal of Microbiology : Journal of Microbiology
TOP