Research Support, Non-U.S. Gov't
- Enhanced Production of Exopolysaccharides by Fed-batch Culture of Ganoderma resinaceum DG-6556
-
Hyun Mi Kim , Soon-Young Paik , Kyung Soo Ra , Kwang Bon Koo , Jong Won Yun , Jang Won Choi
-
J. Microbiol. 2006;44(2):233-242.
-
DOI: https://doi.org/2360 [pii]
-
-
Abstract
- The objectives of this study were to optimize submerged culture conditions of a new fungal isolate, Ganorderma resinaceum, and to enhance the production of bioactive mycelial biomass and exopolysaccharides (EPS) by fed-batch culture. The maximum mycelial growth and EPS production in batch culture were achieved in a medium containing 10 g/l glucose, 8 g/l soy peptone, and 5 mM MnCl2 at an initial pH 6.0 and temperature 31°C. After optimization of culture medium and environmental conditions in batch cultures, a fed-batch culture strategy was employed to enhance production of mycelial biomass and EPS. Five different EPS with molecular weights ranging from 53,000 to 5,257,000 g/mole were obtained from either top or bottom fractions of ethanol precipitate of culture filtrate. A fed-batch culture of G. resinaceum led to enhanced production of both mycelial biomass
and EPS. The maximum concentrations of mycelial biomass (42.2 g/l) and EPS (4.6 g/l)
were obtained when 50 g/l of glucose was fed at day 6 into an initial 10 g/l of glucose
medium. It may be worth attempting with other mushroom fermentation processes for
enhanced production of mushroom polysaccharides, particularly those with industrial
potential.
- Reduction of Hexavalent Chromium by Escherichia coli ATCC 33456 in Batch and Continuous Cultures
-
Woo Chul Bae , Tae Gu Kang , In Kyong Kang , You Jung Won , Byeong Chul Jeong
-
J. Microbiol. 2000;38(1):36-39.
-
-
-
Abstract
- Toxic hexavalent chromium, Cr(VI), was reduced to a less toxic trivalent chromium form by E. coli ATCC 33456. The suitable electron donor for Cr(VI) reduction was glucose. E. coli ATCC 33456 was more resistant to metal cations than other reported Cr(VI) reducing microorganisms. Cell growth was inhibited by the presence of Cr(VI) in a liquid medium and Cr(VI) reduction accompanied cell growth. With a hydraulic retention time of 20 h, Cr(VI) reducing efficiency was 100% to 84% when Cr(VI) concentration in the influent was in the range of 10 to 40 mg L^-1. Specific rate of Cr(VI) concentration in the influent was 2.41 mg Cr(VI) g DCW^-1 h^-1 when 40 mg :^-1 of Cr(VI) influent was used. This result suggested the potential application of E. coli ATCC 33456 for the detoxification of Cr(VI) in Cr(VI) contaminated wastewater.