Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "bladder cancer"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Metabolite-mediated mechanisms linking the urinary microbiome to bladder cancer
Thu Anh Trần, Ho Young Lee, Hae Woong Choi
J. Microbiol. 2025;63(11):e2509001.   Published online November 30, 2025
DOI: https://doi.org/10.71150/jm.2509001
  • 792 View
  • 12 Download
AbstractAbstract PDF

Bladder cancer is the most common malignancy of the urinary tract and is a major health burden globally. Recent advances in microbiome research have revealed that the urinary tract harbors a resident microbial community, overturning the long-held belief in its sterility. Increasing evidence suggests that microbial dysbiosis and microbially derived metabolites contribute to bladder cancer carcinogenesis, progression, and therapeutic responses. Distinct microbial signatures have been observed in bladder cancer patients, with notable differences across disease stages and between primary and recurrent cases. Mechanistic studies have demonstrated that microbe-associated metabolites and toxins can drive DNA damage, chronic inflammation, extracellular matrix remodeling, and epithelial–mesenchymal transition. In addition, biofilm formation allows bacteria to evade immune responses and promotes persistent inflammation, creating a tumor-permissive niche. Beyond pathogenesis, microbial activity also influences therapeutic outcomes; for instance, some microbial pathways can inactivate frontline chemotherapy, while others generate metabolites with anti-tumor properties. Collectively, these patterns define a microbiota–metabolite–immunity axis, presenting opportunities for precision oncology. Targeting microbial pathways, profiling urinary microbiota, and harnessing beneficial metabolites offer promising advancements in biomarker discovery, prognostic refinement, and the development of novel therapeutic strategies for bladder cancer.

Journal Article
Latent Kaposi’s sarcoma-associated herpesvirus infection in bladder cancer cells promotes drug resistance by reducing reactive oxygen species
Suhyuk Lee , Jaehyuk Jang , Hyungtaek Jeon , Jisu Lee , Seung-Min Yoo , Jinsung Park , Myung-Shin Lee
J. Microbiol. 2016;54(11):782-788.   Published online October 29, 2016
DOI: https://doi.org/10.1007/s12275-016-6388-x
  • 349 View
  • 0 Download
  • 8 Crossref
AbstractAbstract PDF
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the major etiologic agent of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Recent studies have indicated that KSHV can be detected at high frequency in patient-derived bladder cancer tissue and might be associated with the pathogenesis of bladder cancer. Bladder cancer is the second most common cancer of the genitourinary tract, and it has a high rate of recurrence. Because drug resistance is closely related to chemotherapy failure and cancer recurrence, we investigated whether KSHV infection is associated with drug resistance of bladder cancer cells. Some KSHV-infected bladder cancer cell lines showed resistance to an anti-cancer drug, cisplatin, possibly as a result of downregulation of reactive oxygen species. Additionally, drug resistance acquired from KSHV infection could partly be overcome by HDAC1 inhibitors. Taken together, the data suggest the possible role of KSHV in chemo-resistant bladder cancer, and indicate the therapeutic potential of HDAC1 inhibitors in drug-resistant bladder cancers associated with KSHV infection.

Citations

Citations to this article as recorded by  
  • Association of urinary tract infection and low albumin/globulin ratio with chemoresistance to gemcitabine-cisplatin in advanced urothelial carcinoma
    Jingcheng Lyu, Ruiyu Yue, Yichen Zhu, Ye Tian, Xinyi Hu
    Canadian Journal of Urology.2025; 32(5): 411.     CrossRef
  • Development of KSHV vaccine platforms and chimeric MHV68-K-K8.1 glycoprotein for evaluating the in vivo immunogenicity and efficacy of KSHV vaccine candidates
    Wan-Shan Yang, Dokyun Kim, Soowon Kang, Chih-Jen Lai, Inho Cha, Pei-Ching Chang, Jae U. Jung, Satya Dandekar
    mBio.2024;[Epub]     CrossRef
  • Genomic analysis of schistosomiasis-associated colorectal cancer reveals a unique mutational landscape and therapeutic implications
    Dong Yu, Anqi Wang, Jing Zhang, Xinxing Li, Caifeng Jiang, Haiyang Zhou
    Genes & Diseases.2023; 10(3): 657.     CrossRef
  • Revisiting Histone Deacetylases in Human Tumorigenesis: The Paradigm of Urothelial Bladder Cancer
    Aikaterini F. Giannopoulou, Athanassios D. Velentzas, Eumorphia G. Konstantakou, Margaritis Avgeris, Stamatia A. Katarachia, Nikos C. Papandreou, Nikolas I. Kalavros, Vassiliki E. Mpakou, Vassiliki Iconomidou, Ema Anastasiadou, Ioannis K. Kostakis, Issido
    International Journal of Molecular Sciences.2019; 20(6): 1291.     CrossRef
  • Hepatitis C Virus-Induced FUT8 Causes 5-FU Drug Resistance in Human Hepatoma Huh7.5.1 Cells
    Shu Li, Xiao-Yu Liu, Qiu Pan, Jian Wu, Zhi-Hao Liu, Yong Wang, Min Liu, Xiao-Lian Zhang
    Viruses.2019; 11(4): 378.     CrossRef
  • Mechanistic Insights into Chemoresistance Mediated by Oncogenic Viruses in Lymphomas
    Jungang Chen, Samantha Kendrick, Zhiqiang Qin
    Viruses.2019; 11(12): 1161.     CrossRef
  • Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas
    Sangmin Kang, Jinjong Myoung
    Journal of Microbiology.2017; 55(5): 319.     CrossRef
  • Chitin Oligosaccharide (COS) Reduces Antibiotics Dose and Prevents Antibiotics-Caused Side Effects in Adolescent Idiopathic Scoliosis (AIS) Patients with Spinal Fusion Surgery
    Yang Qu, Jinyu Xu, Haohan Zhou, Rongpeng Dong, Mingyang Kang, Jianwu Zhao
    Marine Drugs.2017; 15(3): 70.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP