Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "bloom"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms
Wonjae Kim, Yerim Park, Jaejoon Jung, Che Ok Jeon, Masanori Toyofuku, Jiyoung Lee, Woojun Park
J. Microbiol. 2024;62(3):249-260.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00115-2
  • 31 View
  • 1 Download
  • 4 Citations
AbstractAbstract
The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.
Journal Article
Effects of mycosubtilin homolog algicides from a marine bacterium, Bacillus sp. SY-1, against the harmful algal bloom species Cochlodinium polykrikoides
Seong-Yun Jeong , Hong-Joo Son
J. Microbiol. 2021;59(4):389-400.   Published online March 29, 2021
DOI: https://doi.org/10.1007/s12275-021-1086-8
  • 14 View
  • 0 Download
  • 11 Citations
AbstractAbstract
The marine bacterium, Bacillus sp. SY-1, produced algicidal compounds that are notably active against the bloom-forming alga Cochlodinium polykrikoides. We isolated three algicidal compounds and identified these as mycosubtilins with molecular weights of 1056, 1070, and 1084 (designated MS 1056, 1070, and 1084, respectively), based on amino acid analyses and 1H, 13C, and two-dimensional nuclear magnetic resonance spectroscopy, including 1H-15N heteronuclear multiple bond correlation analysis. MS 1056 contains a β- amino acid residue with an alkyl side chain of C15, which has not previously been seen in known mycosubtilin families. MS 1056, 1070, and 1084 showed algicidal activities against C. polykrikoides with 6-h LC50 values of 2.3 ± 0.4, 0.8 ± 0.2, and 0.6 ± 0.1 μg/ml, respectively. These compounds also showed significant algicidal activities against other harmful algal bloom species. In contrast, MS 1084 showed no significant growth inhibitory effects against other organisms, including bacteria and microalgae, although does inhibit the growth of some fungi and yeasts. These observations imply that the algicidal bacterium Bacillus sp. SY-1 and its algicidal compounds could play an important role in regulating the onset and development of harmful algal blooms in natural environments.

Journal of Microbiology : Journal of Microbiology
TOP