Search
- Page Path
-
HOME
> Search
Review
- Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms
-
Wonjae Kim, Yerim Park, Jaejoon Jung, Che Ok Jeon, Masanori Toyofuku, Jiyoung Lee, Woojun Park
-
J. Microbiol. 2024;62(3):249-260. Published online April 8, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00115-2
-
-
31
View
-
1
Download
-
4
Citations
-
Abstract
- The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.
Journal Article
- Effects of mycosubtilin homolog algicides from a marine bacterium, Bacillus sp. SY-1, against the harmful algal bloom species Cochlodinium polykrikoides
-
Seong-Yun Jeong , Hong-Joo Son
-
J. Microbiol. 2021;59(4):389-400. Published online March 29, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1086-8
-
-
14
View
-
0
Download
-
11
Citations
-
Abstract
- The marine bacterium, Bacillus sp. SY-1, produced algicidal
compounds that are notably active against the bloom-forming
alga Cochlodinium polykrikoides. We isolated three algicidal
compounds and identified these as mycosubtilins with
molecular weights of 1056, 1070, and 1084 (designated MS
1056, 1070, and 1084, respectively), based on amino acid
analyses and 1H, 13C, and two-dimensional nuclear magnetic
resonance spectroscopy, including 1H-15N heteronuclear
multiple bond correlation analysis. MS 1056 contains a β-
amino acid residue with an alkyl side chain of C15, which has
not previously been seen in known mycosubtilin families.
MS 1056, 1070, and 1084 showed algicidal activities against
C. polykrikoides with 6-h LC50 values of 2.3 ± 0.4, 0.8 ± 0.2,
and 0.6 ± 0.1 μg/ml, respectively. These compounds also
showed significant algicidal activities against other harmful
algal bloom species. In contrast, MS 1084 showed no significant
growth inhibitory effects against other organisms, including
bacteria and microalgae, although does inhibit the
growth of some fungi and yeasts. These observations imply
that the algicidal bacterium Bacillus sp. SY-1 and its algicidal
compounds could play an important role in regulating the
onset and development of harmful algal blooms in natural
environments.
TOP