Search
- Page Path
-
HOME
> Search
Journal Articles
- Licochalcone A Protects Vaginal Epithelial Cells Against Candida albicans Infection Via the TLR4/NF-κB Signaling Pathway
-
Wei Li, Yujun Yin, Taoqiong Li, Yiqun Wang, Wenyin Shi
-
J. Microbiol. 2024;62(7):525-533. Published online May 31, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00134-z
-
-
122
View
-
0
Download
-
1
Web of Science
-
Abstract
-
Vulvovaginal candidiasis (VVC) is a prevalent condition affecting a significant portion of women worldwide. Licochalcone A (LA), a natural compound with diverse biological activities, holds promise as a protective agent against Candida albicans (C. albicans) infection. This study aims to investigate the potential of LA to safeguard vaginal epithelial cells (VECs) from C. albicans infection and elucidate the underlying molecular mechanisms. To simulate VVC in vitro, VK2-E6E7 cells were infected with C. albicans. Candida albicans biofilm formation, C.
albicans adhesion to VK2-E6E7 cells, and C. albicans-induced cell damage and inflammatory responses were assessed by XTT reduction assay, fluorescence assay, LDH assay, and ELISA. CCK-8 assay was performed to evaluate the cytotoxic effects of LA on VK2-E6E7 cells. Western blotting assay was performed to detect protein expression. LA dose-dependently hindered C. albicans biofilm formation and adhesion to VK2-E6E7 cells. Furthermore, LA mitigated cell damage, inhibited the Bax/Bcl-2 ratio, and attenuated the secretion of pro-inflammatory cytokines in C.
albicans-induced VK2-E6E7 cells. The investigation into LA's impact on the Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway revealed that LA downregulated TLR4 expression and inhibited NF-κB activation in C.
albicans-infected VK2-E6E7 cells. Furthermore, TLR4 overexpression partially abated LA-mediated protection, further highlighting the role of the TLR4/NF-κB pathway. LA holds the potential to safeguard VECs against C. albicans infection, potentially offering therapeutic avenues for VVC management.
- Identification and Functional Analysis of Acyl‑Acyl Carrier Protein Δ9 Desaturase from Nannochloropsis oceanica
-
Ruigang Yang , Hui Wang , Lingyun Zhu , Lvyun Zhu , Tianzhong Liu , Dongyi Zhang
-
J. Microbiol. 2023;61(1):95-107. Published online January 31, 2023
-
DOI: https://doi.org/10.1007/s12275-022-00001-9
-
-
Abstract
-
The oleaginous marine microalga Nannochloropsis oceanica strain IMET1 has attracted increasing attention as a promising
photosynthetic cell factory due to its unique excellent capacity to accumulate large amounts of triacylglycerols and eicosapentaenoic
acid. To complete the genomic annotation for genes in the fatty acid biosynthesis pathway of N. oceanica, we
conducted the present study to identify a novel candidate gene encoding the archetypical chloroplast stromal acyl-acyl carrier
protein Δ9 desaturase. The full-length cDNA was generated using rapid-amplification of cDNA ends, and the structure of
the coding region interrupted by four introns was determined. The RT-qPCR results demonstrated the upregulated transcriptional
abundance of this gene under nitrogen starvation condition. Fluorescence localization studies using EGFP-fused
protein revealed that the translated protein was localized in chloroplast stroma. The catalytic activity of the translated protein
was characterized by inducible expression in Escherichia coli and a mutant yeast strain BY4389, indicating its potential
desaturated capacity for palmitoyl-ACP (C16:0-ACP) and stearoyl-ACP (C18:0-ACP). Further functional complementation
assay using BY4839 on plate demonstrated that the expressed enzyme restored the biosynthesis of oleic acid. These results
support the desaturated activity of the expressed protein in chloroplast stroma to fulfill the biosynthesis and accumulation
of monounsaturated fatty acids in N. oceanica strain IMET1.
Review
- REVIEW] Candida albicans, a Major Human Fungal Pathogen
-
Joon Kim , Peter Sudbery
-
J. Microbiol. 2011;49(2):171-177. Published online May 3, 2011
-
DOI: https://doi.org/10.1007/s12275-011-1064-7
-
-
40
View
-
0
Download
-
373
Scopus
-
Abstract
-
Candida albicans is the most common human fungal pathogen (Beck-Sague and Jarvis, 1993). It is normally a harmless commensal organism. However, it is a opportunistic pathogen for some immunologically weak and immunocompromised people. It is responsible for painful mucosal infections such as the vaginitis in
women and oral-pharangeal thrush in AIDS patients. In certain groups of vulnerable patients it causes severe, life-threatening bloodstream infections and it causes severe, life-threatening bloodstream infections and subsequent infections in the internal organs. There are various fascinating features of the C. albicans life cycle and biology that have made the pathogen the subject of extensive research, including its ability to grow in unicellular yeast, psudohyphal, and hyphal forms (Fig. 1A); its ability to switch between different but stable phenotypic states, and the way that it retains the ability to mate but apparently loses the ability to go through meiosis to complete the sexual cycle. This research has been greatly facilitated by the derivation of the complete C. albicans genome sequence (Braun et al., 2005), the development of a variety of molecular tools for gene manipulation, and a store of underpinning knowledge of cell biology borrowed from the distantly related model yeast Saccharomyces cerevisiae (Berman and Sudbery, 2002; Noble and Johnson,
2007). This review will provide a brief overview of the importance of C. albicans as a public health issue, the experimental tools developed to study its fascinating biology, and some examples of how these have been applied.
- Laboratory Diagnosis of Invasive Candidiasis
-
Arjuna N.B. Ellepola , Christine J. Morrison
-
J. Microbiol. 2005;43(1):65-84.
-
-
-
Abstract
-
Invasive candidiasis is associated with high morbidity and mortality. Clinical diagnosis is complicated by a lack of specific clinical signs and symptoms of disease. Laboratory diagnosis is also complex because circulating antibodies to Candida species may occur in normal individuals as the result of commensal colonization of mucosal surfaces thereby reducing the usefulness of antibody detection for the diagnosis of this disease. In addition, Candida species antigens are often rapidly cleared from the circulation so that antigen detection tests often lack the desired level of sensitivity. Microbiological confirmation is difficult because blood cultures can be negative in up to 50% of autopsy-proven cases of deep-seated candidiasis or may only become positive late in the infection. Positive cultures from urine or mucosal surfaces do not necessarily indicate invasive disease although can occur during systemic infection. Furthermore, differences in the virulence and in the susceptibility of the various Candida species to antifungal drugs make identification to the species level important for clinical management. Newer molecular biological tests have generated interest but are not yet standardized or readily available in most clinical laboratory settings nor have they been validated in large clinical trials. Laboratory surveillance of at-risk patients could result in earlier initiation of antifungal therapy if sensitive and specific diagnostic tests, which are also cost effective, become available. This review will compare diagnostic tests currently in use as well as those under development by describing their assets and limitations for the diagnosis of invasive candidiasis.
<br><br><br>
TOP