Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "catalase-peroxidase"
Filter
Filter
Keywords
Publication year
Enzyme Activities Related to the Methanol Oxidation of Mycobacterium sp. strain JC1 DSM 3803
Youngtae Ro , Eungbin Kim , Youngmin Kim
J. Microbiol. 2000;38(4):209-217.
  • 15 View
  • 0 Download
AbstractAbstract
Mycobacterium sp. strain JC1 DSM 3803 grown in methanol showed no methanol dehydrogenase or oxidase activities found in most methylotrophic bacteria and yeasts, respectively. Even though the methanol-grown cells exhibited a little methanol-dependent oxidation by cytochrome c-dependent methanol dehydrogenase and alcohol dehydrogenase, they were not the key enzymes responsible for the methanol oxidation of the cells, in that the cells contained no c-type cytochrome and the methanol oxidizing activity from the partially purified alcohol dehydrogenase was too low, respectively. In substrate switching experiments, we found that only a catalase-peroxidase among the three types of catalase found in glucose-grown cells was highly expressed in the methanol-grown cells and that its activity was relatively high during the exponential growth phase in Mycobacterium sp. JC1. Therefore, we propose that catalase-peroxidase is an essential enzyme responsible for the methanol metabolism directly or indirectly in Mycobacterium sp. JC1.
Analysis of Catalases from Photosynthetic Bacterium Rhodospirillum rubrum S1
Hee-Kyoung Lim , Young-Mi Kim , Dong-Heon Lee , Hyung-Yeel Kahng , Duck-Chul Oh
J. Microbiol. 2001;39(3):168-176.
  • 15 View
  • 0 Download
AbstractAbstract
Five different types of catalases from photosynthetic bacterium Rhodospirillum rubrum S1 grown aerobically in the dark were found in this study, and designated Cat1 (350 kDa), Cat2 (323 kDa), Cat3 (266 kDa), Cat4 (246 kDa), and Cat5 (238 kDa). Analysis of native PAGE revealed that Cat2, Cat3, and Cat4 were also produced in the cells anaerobically grown in the light. It is notable that only Cat2 was expressed much more strongly in response to the anaerobic condition. Enzyme activity staining demonstrated that Cat3 and Cat4 had bifunctional catalase-peroxidase activities, while Cat1, Cat2, and Cat5 were typical monofunctional catalases. S1 cells grown aerobically in the presence of malate as the sole source of carbon exhibited an apparent catalase Km value of 10 mM and a Vmax of about 705 U/mg protein at late stationary growth phase. The catalase activity of S1 cells grown in the anaerobic environment exhibited a much lower Vmax of about 109 U/mg protein at late logarithmic growth phase. The catalytic activity was stable in the broad range of temperatures (30 C-60 C), and pH (6.0-10.0). R. rubrum S1 was much more resistant to H_2 O_2 in the stationary growth phase than in the exponential growth phase regardless of growth conditions. Cells of stationary growth phase treated with 15 mM H 2 O 2 for 1 h showed 3-fold higher catalase activities than the untreated cells. In addition, L-glutamate induced an 80-fold increase in total catalase activity of R. rubrum S1 compared with malic acid. Through fraction analyses of S1 cells, Cat2, Cat3, Cat4 and Cat5 were found in both cytoplasm and periplasm, while Cat1 was localized only in the cytoplasm.

Journal of Microbiology : Journal of Microbiology
TOP