Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "cell differentiation"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Porphyromonas gingivalis-Derived Lipopolysaccharide-Mediated Activation of MAPK Signaling Regulates Inflammatory Response and Differentiation in Human Periodontal Ligament Fibroblasts
Taegun Seo , Seho Cha , Tae-Il Kim , Hee-Jung Park , Jeong-Soon Lee , Kyung Mi Woo
J. Microbiol. 2012;50(2):311-319.   Published online April 27, 2012
DOI: https://doi.org/10.1007/s12275-012-2146-x
  • 6 View
  • 0 Download
  • 31 Citations
AbstractAbstract
Porphyromonas gingivalis (P.g.), which is a potential pathogen for periodontal diseases, contains lipopolysaccharide (LPS), and this endotoxin stimulates a variety of cellular responses. At present, P.g.-derived LPS-induced cellular responses in human periodontal ligament fibroblasts (PDLFs) are not well characterized. Here, we demonstrate that P.gderived LPS regulates inflammatory responses, apoptosis and differentiation in PDLFs. Interleukin-6 (IL-6) and -8 (IL-8) were effectively upregulated by treatment of P.g.-derived LPS, and we confirmed apoptosis markers including elevated cytochrome c levels, active caspase-3 and morphological change in the presence of P.g.-derived LPS. Moreover, when PDLFs were cultured with differentiation media, P.g.- derived LPS reduced the expression of differentiation marker genes, as well as reducing alkaline phosphatase (ALP) activity and mineralization. P.g.-derived LPS-mediated these cellular responses were effectively abolished by treatment of mitogen-activated protein kinase (MAPK) inhibitors. Taken together, our results suggest that P.g.-derived LPS regulates several cellular responses via activation of MAPK signaling pathways in PDLFs.

Journal of Microbiology : Journal of Microbiology
TOP