Search
- Page Path
-
HOME
> Search
Journal Article
- Porphyromonas gingivalis-Derived Lipopolysaccharide-Mediated Activation of MAPK Signaling Regulates Inflammatory Response and Differentiation in Human Periodontal Ligament Fibroblasts
-
Taegun Seo , Seho Cha , Tae-Il Kim , Hee-Jung Park , Jeong-Soon Lee , Kyung Mi Woo
-
J. Microbiol. 2012;50(2):311-319. Published online April 27, 2012
-
DOI: https://doi.org/10.1007/s12275-012-2146-x
-
-
6
View
-
0
Download
-
31
Citations
-
Abstract
- Porphyromonas gingivalis (P.g.), which is a potential pathogen
for periodontal diseases, contains lipopolysaccharide
(LPS), and this endotoxin stimulates a variety of cellular
responses. At present, P.g.-derived LPS-induced cellular responses
in human periodontal ligament fibroblasts (PDLFs)
are not well characterized. Here, we demonstrate that P.gderived
LPS regulates inflammatory responses, apoptosis
and differentiation in PDLFs. Interleukin-6 (IL-6) and -8
(IL-8) were effectively upregulated by treatment of P.g.-derived
LPS, and we confirmed apoptosis markers including
elevated cytochrome c levels, active caspase-3 and morphological
change in the presence of P.g.-derived LPS. Moreover,
when PDLFs were cultured with differentiation media, P.g.-
derived LPS reduced the expression of differentiation marker
genes, as well as reducing alkaline phosphatase (ALP) activity
and mineralization. P.g.-derived LPS-mediated these
cellular responses were effectively abolished by treatment
of mitogen-activated protein kinase (MAPK) inhibitors.
Taken together, our results suggest that P.g.-derived LPS
regulates several cellular responses via activation of MAPK
signaling pathways in PDLFs.
TOP