Search
- Page Path
-
HOME
> Search
Journal Articles
- Construction of high-density transposon mutant library of Staphylococcus aureus using bacteriophage ϕ11
-
Wonsik Lee
-
J. Microbiol. 2022;60(12):1123-1129. Published online November 24, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2476-2
-
-
22
View
-
0
Download
-
2
Citations
-
Abstract
- Transposon mutant libraries are an important resource to
study bacterial metabolism and pathogenesis. The fitness
analysis of mutants in the libraries under various growth conditions
provides important clues to study the physiology and
biogenesis of structural components of a bacterial cell. A transposon
library in conjunction with next-generation sequencing
techniques, collectively named transposon sequencing (Tnseq),
enables high-throughput genome profiling and synthetic
lethality analysis. Tn-seq has also been used to identify essential
genes and to study the mode of action of antibacterials.
To construct a high-density transposon mutant library, an efficient
delivery system for transposition in a model bacterium
is essential. Here, I describe a detailed protocol for generating
a high-density phage-based transposon mutant library in a
Staphylococcus aureus strain, and this protocol is readily applicable
to other S. aureus strains including USA300 and MW2.
- Lysobacter arenosi sp. nov. and Lysobacter solisilvae sp. nov. isolated from soil
-
Kyeong Ryeol Kim† , Kyung Hyun Kim† , Shehzad Abid Khan , Hyung Min Kim , Dong Min Han , Che Ok Jeon
-
J. Microbiol. 2021;59(8):709-718. Published online June 1, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1156-y
-
-
16
View
-
0
Download
-
8
Citations
-
Abstract
- Two Gram-stain negative, yellow-pigmented, and mesophilic
bacteria, designated strains R7T and R19T, were isolated from
sandy and forest soil, South Korea, respectively. Both strains
were non-motile rods showing catalase- and oxidase-positive
activities. Both strains were shown to grow at 10–37°C
and pH 6.0–9.0, and in the presence of 0–1.5% (w/v) NaCl.
Strain R7T contained iso-C14:0, iso-C15:0, iso-C16:0, and summed
feature 9 (comprising C16:0 10-methyl and/or iso-C17:1
ω9c), whereas strain R19T contained iso-C11:0 3-OH, C16:1 ω7c
alcohol, iso-C11:0, iso-C15:0, iso-C16:0, and summed feature 9
(comprising C16:0 10-methyl and/or iso-C17:1 ω9c) as major
cellular fatty acids (> 5%). Both strains contained ubiquinone-
8 as the sole isoprenoid quinone and phosphatidylglycerol,
phosphatidylethanolamine, and an unidentified phospholipid
as the major polar lipids. The DNA G + C contents
of strains R7T and R19T calculated from their genomes were
66.9 mol% and 68.9 mol%, respectively. Strains R7T and R19T
were most closely related to Lysobacter panacisoli C8-1T and
Lysobacter niabensis GH34-4T with 98.7% and 97.8% 16S
rRNA sequence similarities, respectively. Phylogenetic analyses
based on 16S rRNA gene sequences showed that strains
R7T and R19T formed distinct phylogenetic lineages within
the genus Lysobacter. Based on phenotypic, chemotaxonomic,
and molecular features, strains R7T and R19T represent novel
species of the genus Lysobacter, for which the names Lysobacter
arenosi sp. nov. and Lysobacter solisilvae sp. nov. are
proposed. The type strains of L. arenosi and L. solisilvae are
R7T (= KACC 21663T = JCM 34257T) and R19T (= KACC
21767T = JCM 34258T), respectively.
- Full-repertoire comparison of the microscopic objects composing the human gut microbiome with sequenced and cultured communities
-
Edmond Kuete Yimagou , Jean-Pierre Baudoin , Rita Abou Abdallah , Fabrizio Di Pinto , Jacques Yaacoub Bou Khalil , Didier Raoult
-
J. Microbiol. 2020;58(5):377-386. Published online April 11, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9365-3
-
-
20
View
-
0
Download
-
3
Citations
-
Abstract
- The study of the human gut microbiome is essential in microbiology
and infectious diseases as specific alterations in the
gut microbiome might be associated with various pathologies,
such as chronic inflammatory disease, intestinal infection
and colorectal cancer. To identify such dysregulations,
several strategies are being used to create a repertoire of the
microorganisms composing the human gut microbiome. In
this study, we used the “microscomics” approach, which consists
of creating an ultrastructural repertoire of all the cell-like
objects composing stool samples from healthy donors using
transmission electron microscopy (TEM). We used TEM to
screen ultrathin sections of 8 resin-embedded stool samples.
After exploring hundreds of micrographs, we managed to
elaborate ultrastructural categories based on morphological
criteria or features. This approach explained many inconsistencies
observed with other techniques, such as metagenomics
and culturomics. We highlighted the value of our cultureindependent
approach by comparing our microscopic images
to those of cultured bacteria and those reported in the
literature. This study helped to detect “minimicrobes” Candidate
Phyla Radiation (CPR) for the first time in human
stool samples. This “microscomics” approach is non-exhaustive
but complements already existing approaches and adds
important data to the puzzle of the microbiota.
- Impact of small RNA RaoN on nitrosative-oxidative stress resistance and virulence of Salmonella enterica serovar Typhimurium
-
Sinyeon Kim , Yong Heon Lee
-
J. Microbiol. 2020;58(6):499-506. Published online April 11, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0027-2
-
-
16
View
-
0
Download
-
4
Citations
-
Abstract
- RaoN is a Salmonella-specific small RNA that is encoded in
the cspH-envE intergenic region on Salmonella pathogenicity
island-11. We previously reported that RaoN is induced under
conditions of acid and oxidative stress combined with nutrient
limitation, contributing to the intramacrophage growth
of Salmonella enterica serovar Typhimurium. However, the
role of RaoN in nitrosative stress response and virulence has
not yet been elucidated. Here we show that the raoN mutant
strain has increased susceptibility to nitrosative stress by
using a nitric oxide generating acidified nitrite. Extending
previous research on the role of RaoN in oxidative stress resistance,
we found that NADPH oxidase inhibition restores
the growth of the raoN mutant in LPS-treated J774A.1 macrophages.
Flow cytometry analysis further revealed that the
inactivation of raoN leads to an increase in the intracellular
level of reactive oxygen species (ROS) in Salmonella-infected
macrophages, suggesting that RaoN is involved in the inhibition
of NADPH oxidase-mediated ROS production by mechanisms
not yet resolved. Moreover, we evaluated the effect
of raoN mutation on the virulence in murine systemic
infection and determined that the raoN mutant is less virulent
than the wild-type strain following oral inoculation. In
conclusion
, small regulatory RNA RaoN controls nitrosativeoxidative
stress resistance and is required for virulence of
Salmonella in mice.
TOP