Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "chemoautotrophy"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Fus3 and Tpk2 protein kinases regulate the phosphorylation-dependent functions of RNA helicase Dhh1 in yeast mating and Ste12 protein expression
Jaehee Hwang , Daehee Jung , Jinmi Kim
J. Microbiol. 2022;60(8):843-848.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2213-x
  • 41 View
  • 0 Download
AbstractAbstract
Decapping of mRNA is a key regulatory step for mRNA decay and translation. The RNA helicase, Dhh1, is known as a decapping activator and translation repressor in yeast Saccharomyces cerevisiae. Dhh1 also functions as a gene-specific positive regulator in the expression of Ste12, a mating-specific transcription factor. A previous study showed that the Nerminal phosphorylation of Dhh1 regulates its association with the mRNA-binding protein, Puf6, to affect the protein translation of Ste12. Here, we investigated the roles of the phosphorylated residues of Dhh1 in yeast mating process and Ste12 expression. The phospho-deficient mutation, DHH1- T10A, was associated with decreased diploid formation during mating and decreased level of the Ste12 protein in response to α-mating pheromone. A kinase overexpression analysis revealed that Ste12 protein expression was affected by overexpression of Fus3 MAP kinase or Tpk2 kinase. Tpk2 was shown to be responsible for phosphorylation of Dhh1 at Thr10. Our study shows that overexpression of Fus3 or Tpk2 alters the Dhh1-Puf6 protein interaction and thereby affects Ste12 protein expression.
H2 Metabolism revealed by metagenomic analysis of subglacial sediment from East Antarctica
Zhifeng Yang , Yu Zhang , Yongxin Lv , Wenkai Yan , Xiang Xiao , Bo Sun , Hongmei Ma
J. Microbiol. 2019;57(12):1095-1104.   Published online November 22, 2019
DOI: https://doi.org/10.1007/s12275-019-9366-2
  • 43 View
  • 0 Download
  • 11 Web of Science
  • 10 Crossref
AbstractAbstract
Subglacial ecosystems harbor diverse chemoautotrophic microbial communities in areas with limited organic carbon, and lithological H2 produced during glacial erosion has been considered an important energy source in these ecosystems. To verify the H2-utilizing potential there and to identify the related energy-converting metabolic mechanisms of these communities, we performed metagenomic analysis on subglacial sediment samples from East Antarctica with and without H2 supplementation. Genes coding for several [NiFe]- hydrogenases were identified in raw sediment and were enriched after H2 incubation. All genes in the dissimilatory nitrate reduction and denitrification pathways were detected in the subglacial community, and the genes coding for these pathways became enriched after H2 was supplied. Similarly, genes transcribing key enzymes in the Calvin cycle were detected in raw sediment and were also enriched. Moreover, key genes involved in H2 oxidization, nitrate reduction, oxidative phosphorylation, and the Calvin cycle were identified within one metagenome-assembled genome belonging to a Polaromonas sp. As suggested by our results, the microbial community in the subglacial environment we investigated consisted of chemoautotrophic populations supported by H2 oxidation. These results further confirm the importance of H2 in the cryosphere.

Citations

Citations to this article as recorded by  
  • Microbial genetic potential differs among cryospheric habitats of the Damma glacier
    Maomao Feng, Serina Robinson, Weihong Qi, Arwyn Edwards, Beat Stierli, Marcel van der Heijden, Beat Frey, Gilda Varliero
    Microbial Genomics .2024;[Epub]     CrossRef
  • Inorganic carbon metabolism enhanced hydrogen-driven denitrification: Evaluation of carbon fixation pathways and microbial traits
    Puchun Wang, Yang Wu, Lan Yang, Xiong Zheng, Min Long, Yinguang Chen
    Chemical Engineering Journal.2024; 497: 154528.     CrossRef
  • The response of C/N/S cycling functional microbial communities to redox conditions in shallow aquifers using in-situ sediment as bio-trap matrix
    Cui Li, Rong Chen, Weiwei Ouyang, Chen Xue, Minghui Liu, Hui Liu
    Environmental Technology.2024; 45(18): 3666.     CrossRef
  • Glacial Water: A Dynamic Microbial Medium
    Gilda Varliero, Pedro H. Lebre, Beat Frey, Andrew G. Fountain, Alexandre M. Anesio, Don A. Cowan
    Microorganisms.2023; 11(5): 1153.     CrossRef
  • Microbial Community Structure and Metabolic Potential at the Initial Stage of Soil Development of the Glacial Forefields in Svalbard
    Chen Tian, Yongxin Lv, Zhifeng Yang, Ruifeng Zhang, Zhuoyi Zhu, Hongmei Ma, Jing Li, Yu Zhang
    Microbial Ecology.2023; 86(2): 933.     CrossRef
  • Aerobic hydrogen-oxidizing bacteria in soil: from cells to ecosystems
    Xinyun Fan, Xuemeng Zhang, Guohua Zhao, Xin Zhang, Lei Dong, Yinguang Chen
    Reviews in Environmental Science and Bio/Technology.2022; 21(4): 877.     CrossRef
  • Prokaryotic community and diversity in coastal surface waters along the Western Antarctic Peninsula
    Rafet Cagri Ozturk, Ali Muzaffer Feyzioglu, Ilhan Altinok
    Polar Science.2022; 31: 100764.     CrossRef
  • Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps)
    Carla Perez-Mon, Weihong Qi, Surendra Vikram, Aline Frossard, Thulani Makhalanyane, Don Cowan, Beat Frey
    Microbial Genomics .2021;[Epub]     CrossRef
  • Global modeling of hydrogen using GFDL-AM4.1: Sensitivity of soil removal and radiative forcing
    Fabien Paulot, David Paynter, Vaishali Naik, Sergey Malyshev, Raymond Menzel, Larry W. Horowitz
    International Journal of Hydrogen Energy.2021; 46(24): 13446.     CrossRef
  • Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments
    Eric C. Dunham, John E. Dore, Mark L. Skidmore, Eric E. Roden, Eric S. Boyd
    Proceedings of the National Academy of Sciences.2021;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP