Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "chromatin"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
[Protocol]Rapid method for chromatin immunoprecipitation (ChIP) assay in a dimorphic fungus, Candida albicans
Jueun Kim , Jung-Shin Lee
J. Microbiol. 2020;58(1):11-16.   Published online June 11, 2019
DOI: https://doi.org/10.1007/s12275-020-9143-2
  • 45 View
  • 0 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract
A chromatin immunoprecipitation (ChIP) assay is a method to identify how much a protein of interest binds to the DNA region. This method is indispensable to study the mechanisms of how the transcription factors or chromatin modifications regulate the gene expression. Candida albicans is a dimorphic pathogenic fungus, which can change its morphology very rapidly from yeast to hypha in response to the environmental signal. The morphological change of C. albicans is one of the critical factors for its virulence. Therefore, it is necessary to understand how to regulate the expression of genes for C. albicans to change its morphology. One of the essential methods for us to understand this regulation is a ChIP assay. There have been many efforts to optimize the protocol to lower the background signal and to analyze the results accurately because a ChIP assay can provide very different results even with slight differences in the experimental procedure. We have optimized the rapid and efficient ChIP protocol so that it could be applied equally for both yeast and hyphal forms of C. albicans. Our method in this protocol is also comparatively rapid to the method widely used. In this protocol, we described our rapid method for the ChIP assay in C. albicans in detail.

Citations

Citations to this article as recorded by  
  • Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing
    Xueqin Shu, Yingying Shi, Yi Huang, Dan Yu, Baolin Sun
    Nature Communications.2023;[Epub]     CrossRef
  • Molecular Identification, Dimorphism and Virulence of C. albicans
    Mohsen A. Sayed, Gihad A. Sayed, Eman Abdullah M. Ali
    Research Journal of Pharmacy and Technology.2023; : 1007.     CrossRef
  • Methyltransferase-like 3 silenced inhibited the ferroptosis development via regulating the glutathione peroxidase 4 levels in the intracerebral hemorrhage progression
    Liu Zhang, Xiangyu Wang, Wenqiang Che, Yongjun Yi, Shuoming Zhou, Yongjian Feng
    Bioengineered.2022; 13(6): 14215.     CrossRef
  • Ino80 is required for H2A.Z eviction from hypha‐specific promoters and hyphal development of Candida albicans
    Qun Zhao, Baodi Dai, Hongyu Wu, Wencheng Zhu, Jiangye Chen
    Molecular Microbiology.2022; 118(1-2): 92.     CrossRef
  • Set1-mediated H3K4 methylation is required for Candida albicans virulence by regulating intracellular level of reactive oxygen species
    Jueun Kim, Shinae Park, Sohee Kwon, Eun-Jin Lee, Jung-Shin Lee
    Virulence.2021; 12(1): 2648.     CrossRef
Review
MINIREVIEW] Histone deacetylase-mediated morphological transition in Candida albicans
Jueun Kim , Ji-Eun Lee , Jung-Shin Lee
J. Microbiol. 2015;53(12):805-811.   Published online December 2, 2015
DOI: https://doi.org/10.1007/s12275-015-5488-3
  • 47 View
  • 0 Download
  • 21 Crossref
AbstractAbstract
Candida albicans is the most common opportunistic fungal pathogen, which switches its morphology from single-cell yeast to filament through the various signaling pathways responding to diverse environmental cues. Various transcriptional factors such as Nrg1, Efg1, Brg1, Ssn6, and Tup1 are the key components of these signaling pathways. Since C. albicans can regulate its transcriptional gene expressions using common eukaryotic regulatory systems, its morphological transition by these signaling pathways could be linked to the epigenetic regulation by chromatin structure modifiers. Histone proteins, which are critical components of eukaryotic chromatin structure, can regulate the eukaryotic chromatin structure through their own modifications such as acetylation, methylation, phosphorylation and ubiquitylation. Recent studies revealed that various histone modifications, especially histone acetylation and deacetylation, participate in morphological transition of C. albicans collaborating with well-known transcription factors in the signaling pathways. Here, we review recent studies about chromatin-mediated morphological transition of C. albicans focusing on the interaction between transcription factors in the signaling pathways and histone deacetylases.

Citations

Citations to this article as recorded by  
  • Histone deacetylase Sir2 promotes the systemic Candida albicans infection by facilitating its immune escape via remodeling the cell wall and maintaining the metabolic activity
    Chen Yang, Guanglin Li, Qiyue Zhang, Wenhui Bai, Qingiqng Li, Peipei Zhang, Jiye Zhang, Antonio Di Pietro
    mBio.2024;[Epub]     CrossRef
  • Curcumin Epigenetically Represses Histone Acetylation of Echinocandin B Producing Emericella rugulosa
    Vandana Kumari, Vinay Kumar, Manisha Kaushal, Antresh Kumar
    Physiologia.2023; 3(2): 221.     CrossRef
  • Comparative acetylomic analysis reveals differentially acetylated proteins regulating fungal metabolism in hypovirus‐infected chestnut blight fungus
    Ru Li, Fengyue Chen, Shuangcai Li, Luying Yuan, Lijiu Zhao, Shigen Tian, Baoshan Chen
    Molecular Plant Pathology.2023; 24(9): 1126.     CrossRef
  • Discovery of BRD4–HDAC Dual Inhibitors with Improved Fungal Selectivity and Potent Synergistic Antifungal Activity against Fluconazole-Resistant Candida albicans
    Zhuang Li, Yahui Huang, Jie Tu, Wanzhen Yang, Na Liu, Wei Wang, Chunquan Sheng
    Journal of Medicinal Chemistry.2023; 66(8): 5950.     CrossRef
  • BET–HDAC Dual Inhibitors for Combinational Treatment of Breast Cancer and Concurrent Candidiasis
    Yahui Huang, Na Liu, Zhizhi Pan, Zhuang Li, Chunquan Sheng
    Journal of Medicinal Chemistry.2023; 66(2): 1239.     CrossRef
  • Effects of Hst3p inhibition in Candida albicans: a genome-wide H3K56 acetylation analysis
    Marisa Conte, Daniela Eletto, Martina Pannetta, Anna M. Petrone, Maria C. Monti, Chiara Cassiano, Giorgio Giurato, Francesca Rizzo, Peter Tessarz, Antonello Petrella, Alessandra Tosco, Amalia Porta
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Contributions of a Histone Deacetylase (SirT2/Hst2) to Beauveria bassiana Growth, Development, and Virulence
    Qing Cai, Li Tian, Jia-Tao Xie, Dao-Hong Jiang, Nemat O. Keyhani
    Journal of Fungi.2022; 8(3): 236.     CrossRef
  • Potential antifungal targets based on histones post-translational modifications against invasive aspergillosis
    Yiman Li, Zhihui Song, Ente Wang, Liming Dong, Jie Bai, Dong Wang, Jinyan Zhu, Chao Zhang
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • A fungal sirtuin modulates development and virulence in the insect pathogen, Beauveria bassiana
    Qing Cai, Li Tian, Jia‐Tao Xie, Qiu‐Ying Huang, Ming‐Guang Feng, Nemat O. Keyhani
    Environmental Microbiology.2021; 23(9): 5164.     CrossRef
  • Genetic Analysis of Sirtuin Deacetylases in Hyphal Growth of Candida albicans
    Guolei Zhao, Laura N. Rusche, Aaron P. Mitchell
    mSphere.2021;[Epub]     CrossRef
  • Discovery of Novel Fungal Lanosterol 14α-Demethylase (CYP51)/Histone Deacetylase Dual Inhibitors to Treat Azole-Resistant Candidiasis
    Guiyan Han, Na Liu, Chenglan Li, Jie Tu, Zhuang Li, Chunquan Sheng
    Journal of Medicinal Chemistry.2020; 63(10): 5341.     CrossRef
  • Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control
    Junzhu Chen, Qiong Liu, Lingbing Zeng, Xiaotian Huang
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Investigating Common Pathogenic Mechanisms between Homo sapiens and Different Strains of Candida albicans for Drug Design: Systems Biology Approach via Two-Sided NGS Data Identification
    Shan-Ju Yeh, Chun-Chieh Yeh, Chung-Yu Lan, Bor-Sen Chen
    Toxins.2019; 11(2): 119.     CrossRef
  • Diverse roles of Tup1p and Cyc8p transcription regulators in the development of distinct types of yeast populations
    Libuše Váchová, Zdena Palková
    Current Genetics.2019; 65(1): 147.     CrossRef
  • Chromatin Profiling of the Repetitive and Nonrepetitive Genomes of the Human Fungal Pathogen Candida albicans
    Robert Jordan Price, Esther Weindling, Judith Berman, Alessia Buscaino, Antonio Di Pietro
    mBio.2019;[Epub]     CrossRef
  • Emerging New Targets for the Treatment of Resistant Fungal Infections
    Na Liu, Jie Tu, Guoqiang Dong, Yan Wang, Chunquan Sheng
    Journal of Medicinal Chemistry.2018; 61(13): 5484.     CrossRef
  • Evidence for Mitochondrial Genome Methylation in the Yeast Candida albicans: A Potential Novel Epigenetic Mechanism Affecting Adaptation and Pathogenicity?
    Thais F. Bartelli, Danielle C. F. Bruno, Marcelo R. S. Briones
    Frontiers in Genetics.2018;[Epub]     CrossRef
  • Plant Homeodomain Genes Play Important Roles in Cryptococcal Yeast-Hypha Transition
    Yunfang Meng, Yumeng Fan, Wanqing Liao, Xiaorong Lin, Emma R. Master
    Applied and Environmental Microbiology.2018;[Epub]     CrossRef
  • Disruption of gul-1 decreased the culture viscosity and improved protein secretion in the filamentous fungus Neurospora crassa
    Liangcai Lin, Zhiyong Sun, Jingen Li, Yong Chen, Qian Liu, Wenliang Sun, Chaoguang Tian
    Microbial Cell Factories.2018;[Epub]     CrossRef
  • The Candida albicans HIR histone chaperone regulates the yeast-to-hyphae transition by controlling the sensitivity to morphogenesis signals
    Sabrina Jenull, Michael Tscherner, Megha Gulati, Clarissa J. Nobile, Neeraj Chauhan, Karl Kuchler
    Scientific Reports.2017;[Epub]     CrossRef
  • Histone Deacetylases and Their Inhibition in Candida Species
    Cécile Garnaud, Morgane Champleboux, Danièle Maubon, Muriel Cornet, Jérôme Govin
    Frontiers in Microbiology.2016;[Epub]     CrossRef
Role of chromatin structure in HMRE mediated transcriptional repression of the HSP82 heat shock gene
Lee, See Woo , Gross, Davis S.
J. Microbiol. 1996;34(1):40-48.
  • 36 View
  • 0 Download
AbstractAbstract
We have examined the chromatin structure of the HMRE/HSP82 and HMRa/HSP82 allels using three complementary approaches : DNase I chromating footprinting, micrococcal nuclease (MNase) nucleosome-protected ladder assay, and an in vivo E. coli dam methylase accessibility assay. The footprinting results indicate that the promoter and silencer sequences are assembled into nucleoprotein complexes which exhibit no detectable change in structure, despite a 70-fold range in expression levels. In addition, the promoter region of the HMRa/HSP82 allele is cleaved randomly by MNase in all cases, indicating the absence of anonical nucleosomes over this region irrespective of SIR4 or heat-shock. Finally, no discernible difference in the accessibility of the HMRE/HSP82 locus to dam methylase in SIR4 vs. sir4 cells was seen, which again suggests that the chromatin structure of HMRE/HSP82 allele is identical regardless of SIR4. Altogether, our results indicate that in contrast to other observations of the silent mating-type loci, no discernible structural alteration is detected at either HMR/HSP82 allele regardless of SIR genetic background or transcriptional state of the gene.
Reorganization of chromatin conformation from an active to an inactive state after cessation of transcription
Lee , Myeong Sok
J. Microbiol. 1996;34(1):54-60.
  • 33 View
  • 0 Download
AbstractAbstract
Taking advantage of the heat inducible HSP82 gene in yeast, chromatin structure after transcription cessation was investigated. Alteration of chromating conformation within the HSP82 gene transcription unit into an active state has been shown to correlate with its transcriptional induction. It was thus of interest to examine whether the active chromatin state within the HSP82 mRNA analysis, the gene ceased its transcription within a few hours of cultivation at a normal condition after heat induction. In this condition, an active chromatin conformation in the HSP82 gene body was changed into an inactive state which was revealed by DNase I resistance and by typical nucleosomal cutting periodicity in the corresponding chromatin. These results thus ruled out the possibility of a long-term maintenance of the DNase I sensitive chromatin after transcription cessation. DNA replication may be a critical event for the chromatin reprogramming.

Journal of Microbiology : Journal of Microbiology
TOP