Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "chronosequence"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Temporal and spatial impact of Spartina alterniflora invasion on methanogens community in Chongming Island, China
Xue Ping Chen , Jing Sun , Yi Wang , Heng Yang Zhang , Chi Quan He , Xiao Yan Liu , Nai Shun Bu , Xi-En Long
J. Microbiol. 2018;56(7):507-515.   Published online June 14, 2018
DOI: https://doi.org/10.1007/s12275-018-8062-y
  • 46 View
  • 0 Download
  • 10 Crossref
AbstractAbstract
Methane production by methanogens in wetland is recognized as a significant contributor to global warming. Spartina alterniflora (S. alterniflora), which is an invasion plant in China’s wetland, was reported to have enormous effects on methane production. But studies on shifts in the methanogen community in response to S. alterniflora invasion at temporal and spatial scales in the initial invasion years are rare. Sediments derived from the invasive species S. alterniflora and the native species Phragmites australis (P. australis) in pairwise sites and an invasion chronosequence patch (4 years) were analyzed to investigate the abundance and community structure of methanogens using quantitative real-time PCR (qPCR) and Denaturing gradient gel electrophoresis (DGGE) cloning of the methyl-coenzyme M reductase A (mcrA) gene. For the pairwise sites, the abundance of methanogens in S. alterniflora soils was lower than that of P. australis soils. For the chronosequence patch, the abundance and diversity of methanogens was highest in the soil subjected to two years invasion, in which we detected some rare groups including Methanocellales and Methanococcales. These results indicated a priming effect at the initial invasion stages of S. alterniflora for microorganisms in the soil, which was also supported by the diverse root exudates. The shifts of methanogen communities after S. alterniflora invasion were due to changes in pH, salinity and sulfate. The results indicate that root exudates from S. alterniflora have a priming effect on methanogens in the initial years after invasion, and the predominate methylotrophic groups (Methanosarcinales) may adapt to the availability of diverse substrates and reflects the potential for high methane production after invasion by S. alterniflora.

Citations

Citations to this article as recorded by  
  • Stronger increase of methane emissions from coastal wetlands by non‐native Spartina alterniflora than non‐native Phragmites australis
    Andrea Fuchs, Ian C. Davidson, J. Patrick Megonigal, John L. Devaney, Christina Simkanin, Genevieve L. Noyce, Meng Lu, Grace M. Cott
    PLANTS, PEOPLE, PLANET.2025; 7(1): 62.     CrossRef
  • Predictions of Spartina alterniflora leaf functional traits based on hyperspectral data and machine learning models
    Wei Li, Xueyan Zuo, Zhijun Liu, Leichao Nie, Huazhe Li, Junjie Wang, Zhiguo Dou, Yang Cai, Xiajie Zhai, Lijuan Cui
    European Journal of Remote Sensing.2024;[Epub]     CrossRef
  • Salt marsh soil organic carbon is regulated by drivers of microbial activity
    Hailey Erb, Ashley Keiser, Kristen M DeAngelis
    Sustainable Microbiology.2024;[Epub]     CrossRef
  • Asymmetric responses of functional microbes in methane and nitrous oxide emissions to plant invasion: A meta-analysis
    Yanzhong Yao, Youtao Song, Pinjie Su, Jing Wang, Congke Miao, Yifu Luo, Qiqi Sun, Jiale Wang, Guohui Zhang, Naishun Bu, Zhaolei Li
    Soil Biology and Biochemistry.2023; 178: 108931.     CrossRef
  • Increasing coastal reclamation by Invasive alien plants and coastal armoring threatens the ecological sustainability of coastal wetlands
    Jian Li, Zhanrui Leng, Taitiya Kenneth Yuguda, Lili Wei, Jiaojiao Xia, Chongyu Zhuo, Ziying Nie, Daolin Du
    Frontiers in Marine Science.2023;[Epub]     CrossRef
  • Spartina alterniflora Invaded Coastal Wetlands by Raising Soil Sulfur Contents: A Meta-Analysis
    Zhenzhen Zhao, Liyu Cheng, Chiquan He, Feifei Wang, Jialin Liu, Yuanhang Li, Xueping Chen, Xiaoyan Liu, Gaoming Lv, Daoyuan Wang
    Water.2022; 14(10): 1633.     CrossRef
  • Exogenous nitrogen from riverine exports promotes soil methane production in saltmarshes in China
    Chenhao Zhou, Yan Zhang, Songshuo Li, Qiuyue Jiang, Hongyang Chen, Ting Zhu, Xiao Xu, Hao Liu, Shiyun Qiu, Jihua Wu, Ming Nie, Bo Li
    Science of The Total Environment.2022; 838: 156203.     CrossRef
  • Exogenous Nitrogen from Riverine Exports Promotes Soil Methane Production in Saltmarshes in China
    Chenhao Zhou, Yan Zhang, Songshuo Li, Qiuyue Jiang, Hongyang Chen, Ting Zhu, Xiao Xu, Hao Liu, Shi-Yun Qiu, Jihua Wu, Ming Nie, Bo Li
    SSRN Electronic Journal .2021;[Epub]     CrossRef
  • Spartina alterniflora raised soil sulfide content by regulating sulfur cycle-associated bacteria in the Jiuduansha Wetland of China
    Chiquan He, Liyu Cheng, Daoyuan Wang, Zhenzhen Zhao, Zhengyu Wang, Feifei Wang, Xiaoxi Wang, Pu Zhang, Xueping Chen, Xiaoyan Liu
    Plant and Soil.2021; 469(1-2): 107.     CrossRef
  • The linkage between methane production activity and prokaryotic community structure in the soil within a shale gas field in China
    Yan-Qin Wang, Guang-Quan Xiao, Yong-Yi Cheng, Ming-Xia Wang, Bo-Ya Sun, Zhi-Feng Zhou
    Environmental Science and Pollution Research.2020; 27(7): 7453.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP