Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
14 "community structure"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea
Wenhui Li, Yu Zhen, Yuhong Yang, Daling Wang, Hui He
J. Microbiol. 2024;62(10):845-858.   Published online August 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00166-5
  • 64 View
  • 0 Download
  • 1 Crossref
AbstractAbstract
This study investigated the community characteristics and environmental influencing factors of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the surface sediments of the East China Sea. The research found no consistent pattern in the richness and diversity of AOA and AOB with respect to the distance from the shore, indicating a complex interplay of factors. The expression levels of AOA amoA gene and AOB amoA gene in the surface sediments of the East China Sea ranged from 4.49 × 102 to 2.17 × 106 copies per gram of sediment and from 6.6 × 101 to 7.65 × 104 copies per gram of sediment, respectively. Salinity (31.77 to 34.53 PSU) and nitrate concentration (1.51 to 10.12 μmol/L) were identified as key environmental factors significantly affecting the AOA community, while salinity and temperature (13.71 to 19.50 °C) were crucial for the AOB community. The study also found that AOA, dominated by the Nitrosopumilaceae family, exhibited higher gene expression levels than AOB, suggesting a more significant role in ammonia oxidation. The expression of AOB was sensitive to multiple environmental factors, indicating a responsive role in nitrogen cycles and ecosystem health. The findings contribute to a better understanding of the biogeochemical processes and ecological roles of ammonia-oxidizing microorganisms in marine sediments.

Citations

Citations to this article as recorded by  
  • Metabolism diversification of ammonia-oxidizing archaea and bacteria under different precipitation gradients and land legacies
    Soumyadev Sarkar, Anna Kazarina, Paige M. Hansen, Kaitlyn Ward, Christopher Hargreaves, Nicholas Reese, Qinghong Ran, Willow Kessler, Ligia F.T. de Souza, Terry D. Loecke, Marcos V.M. Sarto, Charles W. Rice, Lydia H. Zeglin, Benjamin A. Sikes, Sonny T.M.
    Applied Soil Ecology.2025; 206: 105831.     CrossRef
Review
Manganese Transporter Proteins in Salmonella enterica serovar Typhimurium
Nakyeong Ha , Eun-Jin Lee
J. Microbiol. 2023;61(3):289-296.   Published online March 2, 2023
DOI: https://doi.org/10.1007/s12275-023-00027-7
  • 74 View
  • 0 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract
The metal cofactors are essential for the function of many enzymes. The host restricts the metal acquisition of pathogens for their immunity and the pathogens have evolved many ways to obtain metal ions for their survival and growth. Salmonella enterica serovar Typhimurium also needs several metal cofactors for its survival, and manganese has been found to contribute to Salmonella pathogenesis. Manganese helps Salmonella withstand oxidative and nitrosative stresses. In addition, manganese affects glycolysis and the reductive TCA, which leads to the inhibition of energetic and biosynthetic metabolism. Therefore, manganese homeostasis is crucial for full virulence of Salmonella. Here, we summarize the current information about three importers and two exporters of manganese that have been identified in Salmonella. MntH, SitABCD, and ZupT have been shown to participate in manganese uptake. mntH and sitABCD are upregulated by low manganese concentration, oxidative stress, and host NRAMP1 level. mntH also contains a Mn2+- dependent riboswitch in its 5′ UTR. Regulation of zupT expression requires further investigation. MntP and YiiP have been identified as manganese efflux proteins. mntP is transcr!ptionally activated by MntR at high manganese levels and repressed its activity by MntS at low manganese levels. Regulation of yiiP requires further analysis, but it has been shown that yiiP expression is not dependent on MntS. Besides these five transporters, there might be additional transporters that need to be identified.

Citations

Citations to this article as recorded by  
  • Functional characterization of a TerC family protein of Riemerella anatipestifer in manganese detoxification and virulence
    Qinyuan Chen, Fang Guo, Li Huang, Mengying Wang, Chunfeng Shi, Shutong Zhang, Yizhou Yao, Mingshu Wang, Dekang Zhu, Renyong Jia, Shun Chen, Xinxin Zhao, Qiao Yang, Ying Wu, Shaqiu Zhang, Bin Tian, Juan Huang, Xumin Ou, Qun Gao, Di Sun, Ling Zhang, Yanling
    Applied and Environmental Microbiology.2024;[Epub]     CrossRef
  • NO enhances the adaptability to high-salt environments by regulating osmotic balance, antioxidant defense, and ion homeostasis in eelgrass based on transcriptome and metabolome analysis
    Xianyan Wang, Tongtong Wang, Pei Yu, Yuchun Li, Xinfang Lv
    Frontiers in Plant Science.2024;[Epub]     CrossRef
  • High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection
    Benjamin X. Wang, Dmitry Leshchiner, Lijuan Luo, Miles Tuncel, Karsten Hokamp, Jay C. D. Hinton, Denise M. Monack
    Nature Genetics.2024; 56(6): 1288.     CrossRef
  • Biological characteristics of manganese transporter MntP in Klebsiella pneumoniae
    Wei Peng, Yafei Xu, Yilin Yin, Jichen Xie, Renhui Ma, Guoyuan Song, Zhiqiang Zhang, Qiuhang Quan, Qinggen Jiang, Moran Li, Bei Li, Michael David Leslie Johnson
    mSphere.2024;[Epub]     CrossRef
  • Exploring resource competition by protective lactic acid bacteria cultures to control Salmonella in food: an Achilles’ heel to target?
    Ludovico Screpanti, Nathalie Desmasures, Margot Schlusselhuber
    Critical Reviews in Food Science and Nutrition.2024; : 1.     CrossRef
  • Substrate-Induced Structural Dynamics and Evolutionary Linkage of Siderophore-Iron ABC Transporters of Mycobacterium tuberculosis
    Aisha Farhana, Abdullah Alsrhani, Hasan Ejaz, Muharib Alruwaili, Ayman A. M. Alameen, Emad Manni, Zafar Rasheed, Yusuf Saleem Khan
    Medicina.2024; 60(11): 1891.     CrossRef
  • Structures and coordination chemistry of transporters involved in manganese and iron homeostasis
    Shamayeeta Ray, Rachelle Gaudet
    Biochemical Society Transactions.2023; 51(3): 897.     CrossRef
  • Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
    Jin-Won Lee
    Journal of Microbiology.2023; 61(3): 273.     CrossRef
Journal Articles
Characterization and validation of an alternative reference bacterium Korean Pharmacopoeia Staphylococcus aureus strain
Ye Won An , Young Sill Choi , Mi-ran Yun , Chihwan Choi , Su Yeon Kim
J. Microbiol. 2022;60(2):187-191.   Published online January 7, 2022
DOI: https://doi.org/10.1007/s12275-022-1335-5
  • 60 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
The National Culture Collection of Pathogens (NCCP) is a microbial resource bank in Korea that collects pathogen resources causing infectious disease in human and distributes them for research and education. The NCCP bank attempts to discover strains with various characteristics and specific purposes to provide diverse resources to researchers. Staphylococcus aureus American Type Culture Collection (ATCC) 6538P is used as a reference strain in the microbial assay for antibiotics in the Korean and in the United States Pharmacopoeias. We aimed to analyze domestically isolated microbial resources from the NCCP to replace the S. aureus reference strain. Staphylococcus aureus strains were identified using matrix- assisted laser desorption/ionization time-of-flight mass spectrometry and the VITEK-2 system and characterized by multilocus sequence typing, 16S rRNA sequencing, and antibiotic susceptibility testing. Several candidate strains had similar characteristics as the reference strain. Among them, the nucleotide sequence of the 16S rRNA region of NCCP 16830 was 100% identical to that of the reference strain; it was sensitive to six types of antibiotics and showed results most similar to the reference strain. A validity evaluation was conducted using the cylinder-plate method. NCCP 16830 presented valid results and had the same performance as ATCC 6538P; therefore, it was selected as an alternative candidate strain.

Citations

Citations to this article as recorded by  
  • Bacterial composition of refrigerators in households and inactivation of airborne Staphylococcus aureus using a TiO2-UVLED module in a 512 L aerobiology chamber
    So-Seum Yong, Jae-Ik Lee, Dong-Hyun Kang
    Food Microbiology.2023; 114: 104274.     CrossRef
Comparative genomics analysis of Pediococcus acidilactici species
Zhenzhen Li , Qi Song , Mingming Wang , Junli Ren , Songling Liu , Shancen Zhao
J. Microbiol. 2021;59(6):573-583.   Published online May 15, 2021
DOI: https://doi.org/10.1007/s12275-021-0618-6
  • 53 View
  • 0 Download
  • 18 Web of Science
  • 18 Crossref
AbstractAbstract
Pediococcus acidilactici is a reliable bacteriocin producer and a promising probiotic species with wide application in the food and health industry. However, the underlying genetic features of this species have not been analyzed. In this study, we performed a comprehensive comparative genomic analysis of 41 P. acidilactici strains from various ecological niches. The bacteriocin production of 41 strains were predicted and three kinds of bacteriocin encoding genes were identified in 11 P. acidilactici strains, namely pediocin PA-1, enterolysin A, and colicin-B. Moreover, whole-genome analysis showed a high genetic diversity within the population, mainly related to a large proportion of variable genomes, mobile elements, and hypothetical genes obtained through horizontal gene transfer. In addition, comparative genomics also facilitated the genetic explanation of the adaptation for host environment, which specify the protection mechanism against the invasion of foreign DNA (i.e. CRISPR/Cas locus), as well as carbohydrate fermentation. The 41 strains of P. acidilactici can metabolize a variety of carbon sources, which enhances the adaptability of this species and survival in different environments. This study evaluated the antibacterial ability, genome evolution, and ecological flexibility of P. acidilactici from the perspective of genetics and provides strong supporting evidence for its industrial development and application.

Citations

Citations to this article as recorded by  
  • Pediococcus acidilactici Y01 reduces HFD-induced obesity via altering gut microbiota and metabolomic profiles and modulating adipose tissue macrophage M1/M2 polarization
    Yujing Wang, Yu Xue, Huan Xu, Qian Zhu, Kaili Qin, Zhonglei He, Aixiang Huang, Min Mu, Xinrong Tao
    Food & Function.2025;[Epub]     CrossRef
  • Draft genome sequence of Pediococcus acidilactici 3G3 isolated from Philippine fermented pork
    Zachary B. Lara, Mia Beatriz C. Amoranto, Francisco B. Elegado, Leslie Michelle M. Dalmacio, Marilen Parungao Balolong, Catherine Putonti
    Microbiology Resource Announcements.2024;[Epub]     CrossRef
  • The Potential of Pediococcus acidilactici Cell-Free Supernatant as a Preservative in Food Packaging Materials
    Katherine Kho, Adinda Darwanti Kadar, Mario Donald Bani, Ihsan Tria Pramanda, Leon Martin, Matthew Chrisdianto, Ferren Pratama, Putu Virgina Partha Devanthi
    Foods.2024; 13(5): 644.     CrossRef
  • The complete genome sequences of the two novel probiotics were isolated from the human gut microbiota: Pediococcus acidilactici WNYM01 and Pediococcus acidilactici WNYM02, vitamin B9, and B2-producers
    Wagiha S. Elkalla, Yasser M. Ragab, Mohamed A. Ramadan, Nahla M. Mansour
    Egyptian Pharmaceutical Journal.2024; 23(4): 702.     CrossRef
  • Effects of Pediococcus acidilactici and Rhizopus Oryzae on protein degradation and flavor formation in fermented mutton sausages
    Zihan Li, Wei Su, Yingchun Mu, Qi Qi, Li Jiang
    LWT.2024; 213: 117075.     CrossRef
  • Putative Probiotic Ligilactobacillus salivarius Strains Isolated from the Intestines of Meat-Type Pigeon Squabs
    Shaoqi Tian, Yinhong Jiang, Qiannan Han, Chuang Meng, Feng Ji, Bin Zhou, Manhong Ye
    Probiotics and Antimicrobial Proteins.2024;[Epub]     CrossRef
  • Effect of ginsenoside fermented by Pediococcus acidilactici XM-06 on preventing diarrhea in mice via regulating intestinal barrier function and gut microbiota
    Wen-Man Xu, Qi Liu, Si-Yao Fan, Zi-Xin Wang, Shi-Rui Lu, Jie Liu, Hong-Jie Piao, Wenxiu Ji, Wei-Wei Dong
    Journal of Functional Foods.2024; 123: 106594.     CrossRef
  • Population and functional genomics of lactic acid bacteria, an important group of food microorganism: Current knowledge, challenges, and perspectives
    Weicheng Li, Qiong Wu, Lai‐yu Kwok, Heping Zhang, Renyou Gan, Zhihong Sun
    Food Frontiers.2024; 5(1): 3.     CrossRef
  • CRISPR-Cas systems of lactic acid bacteria and applications in food science
    Yanhua Cui, Xiaojun Qu
    Biotechnology Advances.2024; 71: 108323.     CrossRef
  • Analyzing the genetic diversity and biotechnological potential of Leuconostoc pseudomesenteroides by comparative genomics
    Ismail Gumustop, Fatih Ortakci
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Recent developments in horizontal gene transfer with the adaptive innovation of fermented foods
    Ruhong Wang, Junrui Wu, Nan Jiang, Hao Lin, Feiyu An, Chen Wu, Xiqing Yue, Haisu Shi, Rina Wu
    Critical Reviews in Food Science and Nutrition.2023; 63(5): 569.     CrossRef
  • Changes in Lacto-Fermented Agaricus bisporus (White and Brown Varieties) Mushroom Characteristics, including Biogenic Amine and Volatile Compound Formation
    Elena Bartkiene, Paulina Zarovaite, Vytaute Starkute, Ernestas Mockus, Egle Zokaityte, Gintare Zokaityte, João Miguel Rocha, Romas Ruibys, Dovile Klupsaite
    Foods.2023; 12(13): 2441.     CrossRef
  • Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6, Two Bacteriocinogenic Isolated Strains from Andalusian Spontaneous Fermented Sausages
    José García-López, Claudia Teso-Pérez, Antonio Martín-Platero, Juan Peralta-Sánchez, Juristo Fonollá-Joya, Manuel Martínez-Bueno, Alberto Baños
    Foods.2023; 12(13): 2445.     CrossRef
  • Exploring the impact of initial moisture content on microbial community and flavor generation in Xiaoqu baijiu fermentation
    Huan Wang, Chunhong Sun, Shengzhi Yang, Yulei Ruan, Linjie Lyu, Xuewu Guo, Xiaole Wu, Yefu Chen
    Food Chemistry: X.2023; 20: 100981.     CrossRef
  • Screening and Constructing a Library of Promoter-5′-UTR Complexes with Gradient Strength in Pediococcus acidilactici
    Yize Jia, Chao Huang, Yin Mao, Shenghu Zhou, Yu Deng
    ACS Synthetic Biology.2023; 12(6): 1794.     CrossRef
  • Novel pathways in bacteriocin synthesis by lactic acid bacteria with special reference to ethnic fermented foods
    Basista Rabina Sharma, Prakash M. Halami, Jyoti Prakash Tamang
    Food Science and Biotechnology.2022; 31(1): 1.     CrossRef
  • Genomic analysis and in vivo efficacy of Pediococcus acidilactici as a potential probiotic to prevent hyperglycemia, hypercholesterolemia and gastrointestinal infections
    Hassan M. Al-Emran, Jannatul Ferdouse Moon, Md. Liton Miah, Nigar Sultana Meghla, Rine Christopher Reuben, Mohammad Jashim Uddin, Habiba Ibnat, Shovon Lal Sarkar, Pravas Chandra Roy, M. Shaminur Rahman, A. S. M. Rubayet Ul Alam, Ovinu Kibria Islam, Iqbal
    Scientific Reports.2022;[Epub]     CrossRef
  • Production of Antibacterial Agents and Genomic Characteristics of Probiotics Strains for the Foodborne Pathogen Control
    Su Jin Kim, Jin Song Shin, Han Sol Park, Ji Seop Song, Ki Won Lee, Woo-Suk Bang, Tae Jin Cho
    Current Topic in Lactic Acid Bacteria and Probiotics.2022; 8(1): 1.     CrossRef
Garden microbiomes of Apterostigma dentigerum and Apterostigma pilosum fungus-growing ants (Hymenoptera: Formicidae)
Cely T. González , Kristin Saltonstall , Hermógenes Fernández-Marín
J. Microbiol. 2019;57(10):842-851.   Published online August 3, 2019
DOI: https://doi.org/10.1007/s12275-019-8639-0
  • 42 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract
Fungus-growing ants share a complex symbiosis with microbes, including fungal mutualists, antibiotic-producing bacteria, and fungal pathogens. The bacterial communities associated with this symbiosis are poorly understood but likely play important roles in maintaining the health and function of fungal gardens. We studied bacterial communities in gardens of two Apterostigma species, A. dentigerum, and A. pilosum, using next-generation sequencing to evaluate differences between the two ant species, their veiled and no-veiled fungal garden types, and across three collection locations. We also compared different parts of nests to test for homogeneity within nests. Enterobacteriaceae dominated gardens of both species and common OTUs were shared across both species and nest types. However, differences in community diversity were detected between ant species, and in the communities of A. dentigerum veiled and no-veiled nests within sites. Apterostigma pilosum had a higher proportion of Phyllobacteriaceae and differed from A. dentigerum in the proportions of members of the order Clostridiales. Within A. dentigerum, nests with veiled and no-veiled fungus gardens had similar taxonomic profiles but differed in the relative abundance of some groups, with veiled gardens having more Rhodospirillaceae and Hyphomicrobiaceae, and no-veiled having more Xanthomonadaceae and certain genera in the Enterobacteriaceae C. However, bacterial communities in Apterostigma fungal gardens are highly conserved and resemble those of the nests of other attine ants with dominant taxa likely playing a role in biomass degradation and defense. Further work is required to understand and explain how bacterial community composition of fungus-growing nests is maintained.

Citations

Citations to this article as recorded by  
  • The mobilome landscape of biocide-resistance in Brazilian ESKAPE isolates
    Elias Eduardo Barbosa da Rosa, Frederico Schmitt Kremer
    Brazilian Journal of Microbiology.2024;[Epub]     CrossRef
  • Pharmacological potential of ants and their symbionts – a review
    Surbhi Agarwal, Garima Sharma, Kavita Verma, Narayanan Latha, Vartika Mathur
    Entomologia Experimentalis et Applicata.2022; 170(12): 1032.     CrossRef
  • Disease management in two sympatric Apterostigma fungus‐growing ants for controlling the parasitic fungus Escovopsis
    Yuliana Christopher, William T. Wcislo, Sergio Martínez‐Luis, William O.H. Hughes, Nicole M. Gerardo, Hermógenes Fernández‐Marín
    Ecology and Evolution.2021; 11(11): 6041.     CrossRef
  • The Microbiome of Neotropical Water Striders and Its Potential Role in Codiversification
    Anakena M. Castillo, Kristin Saltonstall, Carlos F. Arias, Karina A. Chavarria, Luis A. Ramírez-Camejo, Luis C. Mejía, Luis F. De León
    Insects.2020; 11(9): 578.     CrossRef
  • Bacteria Contribute to Plant Secondary Compound Degradation in a Generalist Herbivore System
    Charlotte B. Francoeur, Lily Khadempour, Rolando D. Moreira-Soto, Kirsten Gotting, Adam J. Book, Adrián A. Pinto-Tomás, Ken Keefover-Ring, Cameron R. Currie, Margaret J. McFall-Ngai
    mBio.2020;[Epub]     CrossRef
Community structures and genomic features of undesirable white colony-forming yeasts on fermented vegetables
Joon Yong Kim , Juseok Kim , In-Tae Cha , Min Young Jung , Hye Seon Song , Yeon Bee Kim , Changsu Lee , Seung-Yeon Kang , Jin-Woo Bae , Yoon-E Choi , Tae-Woon Kim , Seong Woon Roh
J. Microbiol. 2019;57(1):30-37.   Published online October 25, 2018
DOI: https://doi.org/10.1007/s12275-019-8487-y
  • 51 View
  • 0 Download
  • 21 Web of Science
  • 22 Crossref
AbstractAbstract
White colony-forming yeasts (WCFYs) often appear in fermented foods, depending on the storage method. Despite the ongoing research on fermented foods, the community and genome features of WCFYs have not been well studied. In this study, the community structures of WCFYs on fermented vegetables (kimchi) prepared with various raw materials were investigated using deep sequencing. Only eight operational taxonomic units (OTUs) were detected, indicating that the community structure of WCFYs on kimchi is very simple. The five most abundant OTUs represented Pichia kluyveri, Yarrowia lipolytica, Candida sake, Hanseniaspora uvarum, and Kazachstania servazzii. Using a culture-dependent
method
, 41 strains representing the five major OTUs were isolated from the surface of the food samples. Whole genomes of the five major yeast strains were sequenced and annotated. The total genome length for the strains ranged from 8.97 Mbp to 21.32 Mbp. This is the first study to report genome sequences of the two yeasts Pichia kluyveri and Candida sake. Genome analysis indicated that each yeast strain had core metabolic pathways such as oxidative phosphorylation; purine metabolism; glycolysis/gluconeogenesis; aminoacyl- tRNA biosynthesis; citrate cycle; but strain specific pathways were also found. In addition, no toxin or antimicrobial resistance genes were identified. Our study provides genome information for five WCFY strains that may highlight their potential beneficial or harmful metabolic effects in fermented vegetables.

Citations

Citations to this article as recorded by  
  • Effects of total microbiota-containing backslop from 450-day-fermented kimchi on microbe and metabolite dynamics
    Dongjun Kim, Seong-Eun Park, Juhan Pak, Joon Yong Kim, Tae Woong Whon, Kwang-Moon Cho, Suryang Kwak, Hong-Seok Son, Seong Woon Roh
    Food Chemistry.2025; 468: 142420.     CrossRef
  • Effects of storage temperature on the diversity of white colony-forming yeast and correlations between bacterial and yeast communities in salted kimchi cabbage
    Chan-Il Bae, Yoon-Soo Gwak, Su-Jeong Eom, Shinyoung Lee, Mi-Ju Kim
    Food Science and Biotechnology.2025; 34(4): 1001.     CrossRef
  • Effects of white colony-forming yeast on microbial communities and metabolites in kimchi
    Yoon-Soo Gwak, Shinyoung Lee, Chan-Il Bae, Su-Jeong Eom, Mi-Ju Kim
    Food Chemistry.2025; 465: 142059.     CrossRef
  • D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism
    Chaoyi Zeng, Yue Sun, Haoran Lin, Ziyu Li, Qing Zhang, Ting Cai, Wenliang Xiang, Jie Tang, Patchanee Yasurin
    Molecules.2024; 29(15): 3561.     CrossRef
  • Genomic analysis of Kazachstania aerobia and Kazachstania servazzii reveals duplication of genes related to acetate ester production
    Mandy Man-Hsi Lin, Michelle E. Walker, Vladimir Jiranek, Krista M. Sumby
    Microbial Genomics .2023;[Epub]     CrossRef
  • Fabrication of Gold Nanoparticles and Cinnamaldehyde-Functionalized Paper-Based Films and Their Antimicrobial Activities against White Film-Forming Yeasts
    Seong Youl Lee, Eun Hae Kim, Tae-Woon Kim, Young-Bae Chung, Ji-Hee Yang, Sung Hee Park, Mi-Ai Lee, Sung Gi Min
    ACS Omega.2023; 8(9): 8256.     CrossRef
  • Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences
    Riccardo Favaro, Paula Melisa Garrido, Daniele Bruno, Chiara Braglia, Daniele Alberoni, Loredana Baffoni, Gianluca Tettamanti, Martin Pablo Porrini, Diana Di Gioia, Sergio Angeli
    Science of The Total Environment.2023; 905: 167277.     CrossRef
  • The potential correlation between microbial communities and flavors in fermented bamboo shoots
    Shubo Li, Minghao Sun, Yufeng Tian, Cuiwen Jian, Beibei Lv, Yunxia Bai, Xiaoling Liu, Yuan Guo
    Food Bioscience.2023; 56: 103066.     CrossRef
  • Profiling the composition and metabolic functions of microbial community in pellicle-forming radish paocai
    Ting Mi, Yao Jin, Yulan Che, Jun Huang, Rongqing Zhou, Chongde Wu
    International Journal of Food Microbiology.2023; 388: 110087.     CrossRef
  • Long-term population dynamics of viable microbes in a closed ecosystem of fermented vegetables
    Joon Yong Kim, Seong-Eun Park, Eun-Ju Kim, Seung-Ho Seo, Tae Woong Whon, Kwang-Moon Cho, Sun Jae Kwon, Seong Woon Roh, Hong-Seok Son
    Food Research International.2022; 154: 111044.     CrossRef
  • Safety assessment of white colony-forming yeasts in kimchi
    Chang Hee Jeong, Joon Yong Kim, Young Joon Oh, Hye In Ko, Seong Woon Roh, Sung Wook Hong, Hyuk Cheol Kwon, Sung Gu Han, Tae Woon Kim
    Food Microbiology.2022; 106: 104057.     CrossRef
  • Safety Assessment of White Colony-Forming Yeasts in Kimchi
    Chang Hee Jeong, Joon Yong Kim, Young Joon Oh, Hye In Ko, Seong Woon Roh, Sung Wook Hong, Hyuk Cheol Kwon, Sung Gu Han, Tae-Woon Kim
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Real-time PCR assays for the quantitative detection of Kazachstania servazzii and Candida sake related to undesirable white colony on kimchi
    Mi-Ju Kim, Sung-gi Min, So Won Shin, Jiyong Shin, Hae-Yeong Kim
    Food Control.2021; 125: 107984.     CrossRef
  • Yarrowia lipolytica: a multitalented yeast species of ecological significance
    Dmitry Mamaev, Renata Zvyagilskaya
    FEMS Yeast Research.2021;[Epub]     CrossRef
  • ODFM, an omics data resource from microorganisms associated with fermented foods
    Tae Woong Whon, Seung Woo Ahn, Sungjin Yang, Joon Yong Kim, Yeon Bee Kim, Yujin Kim, Ji-Man Hong, Hojin Jung, Yoon-E Choi, Se Hee Lee, Seong Woon Roh
    Scientific Data.2021;[Epub]     CrossRef
  • Growth Inhibitory Effect of Garlic Powder and Cinnamon Extract on White Colony-Forming Yeast in Kimchi
    Mi-Ju Kim, Seong-Eun Kang, Chang Hee Jeong, Sung-Gi Min, Sung Wook Hong, Seong Woon Roh, Deok-Young Jhon, Tae-Woon Kim
    Foods.2021; 10(3): 645.     CrossRef
  • Halotolerant Yeasts: Biodiversity and Potential Application
    O.D. Ianieva
    Mikrobiolohichnyi Zhurnal.2020; 82(5): 65.     CrossRef
  • Impact of fermentation conditions on the diversity of white colony-forming yeast and analysis of metabolite changes by white colony-forming yeast in kimchi
    Mi-Ju Kim, Hae-Won Lee, Joon Yong Kim, Seong Eun Kang, Seong Woon Roh, Sung Wook Hong, Seung Ran Yoo, Tae-Woon Kim
    Food Research International.2020; 136: 109315.     CrossRef
  • Non-tandem repeat polymorphisms at microsatellite loci in wine yeast species
    María Laura Raymond Eder, Alberto Luis Rosa
    Molecular Genetics and Genomics.2020; 295(3): 685.     CrossRef
  • Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches
    Se Hee Lee, Tae Woong Whon, Seong Woon Roh, Che Ok Jeon
    Applied Microbiology and Biotechnology.2020; 104(18): 7731.     CrossRef
  • Draft Genome Sequences of Two Isolates of the Yeast Kazachstania servazzii Recovered from Soil in Ireland
    Lynne Faherty, Clifton Lewis, Matt McElheron, Niall Garvey, Róisín Duggan, Ben Shovlin, Tadhg Ó Cróinín, Kevin P. Byrne, Caoimhe E. O’Brien, Kenneth H. Wolfe, Geraldine Butler, Antonis Rokas
    Microbiology Resource Announcements.2019;[Epub]     CrossRef
  • Effect of lactic acid bacteria on phenyllactic acid production in kimchi
    Sera Jung, Hyelyeon Hwang, Jong-Hee Lee
    Food Control.2019; 106: 106701.     CrossRef
Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra
Hye Min Kim , Min Jin Lee , Ji Young Jung , Chung Yeon Hwang , Mincheol Kim , Hee-Myong Ro , Jongsik Chun , Yoo Kyung Lee
J. Microbiol. 2016;54(11):713-723.   Published online October 29, 2016
DOI: https://doi.org/10.1007/s12275-016-6294-2
  • 54 View
  • 0 Download
  • 55 Crossref
AbstractAbstract
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.

Citations

Citations to this article as recorded by  
  • Arctic tundra soil depth, more than seasonality, determines active layer bacterial community variation down to the permafrost transition
    Casper T. Christiansen, Katja Engel, Michael Hall, Josh D. Neufeld, Virginia K. Walker, Paul Grogan
    Soil Biology and Biochemistry.2025; 200: 109624.     CrossRef
  • Lanthanum and cerium added to soil influence microbial carbon and nitrogen cycling genes
    Alin Song, Zhiyuan Si, Duanyang Xu, Buqing Wei, Enzhao Wang, Fayao Chong, Fenliang Fan
    Journal of Environmental Management.2025; 373: 123509.     CrossRef
  • Comparative genomic analyses of aerobic planctomycetes isolated from the deep sea and the ocean surface
    Lise Øvreås, Nicolai Kallscheuer, Rita Calisto, Nicola Bordin, Julia E. Storesund, Christian Jogler, Damien Devos, Olga Lage
    Antonie van Leeuwenhoek.2025;[Epub]     CrossRef
  • Responses of soil greenhouse gas emissions to soil mesofauna invasions and its driving mechanisms in the alpine tundra: A microcosm study
    Yujuan Kang, Haitao Wu, Qiang Guan, Zhongsheng Zhang
    Science of The Total Environment.2024; 908: 168255.     CrossRef
  • Flood risk assessment in arid and semi-arid regions using Multi-criteria approaches and remote sensing in a data-scarce region
    Mohamed Adou Sidi Almouctar, Yiping Wu, Shantao An, Xiaowei Yin, Caiqing Qin, Fubo Zhao, Linjing Qiu
    Journal of Hydrology: Regional Studies.2024; 54: 101862.     CrossRef
  • The microbiome structure and shifts in surface and subsurface soil horizon of Haplic Luvisol under different crops cultivation
    Agata Gryta, Anna Piotrowska-Długosz, Jacek Długosz, Magdalena Frąc
    Applied Soil Ecology.2024; 202: 105557.     CrossRef
  • Dynamic responses of soil microbial communities to seasonal freeze-thaw cycles in a temperate agroecosystem
    Fangbo Deng, Hongtu Xie, Tiantian Zheng, Yali Yang, Xuelian Bao, Hongbo He, Xudong Zhang, Chao Liang
    Science of The Total Environment.2024; 950: 175228.     CrossRef
  • Isolation of biocrust cyanobacteria and evaluation of Cu, Pb, and Zn immobilisation potential for soil restoration and sustainable agriculture
    Carlotta Pagli, Sonia Chamizo, Giada Migliore, Lorenza Rugnini, Giovanni De Giudici, Roberto Braglia, Antonella Canini, Yolanda Cantón
    Science of The Total Environment.2024; 946: 174020.     CrossRef
  • Impact of floods and landslides on rhizosphere bacterial communities: a high-throughput 16S rRNA gene sequencing study
    Haseena Abdulkader, Kulkarni Surendra Gopal, Sandeep Sasidharan
    Environmental Science and Pollution Research.2024;[Epub]     CrossRef
  • Microbiome structure variation and soybean’s defense responses during flooding stress and elevated CO2
    Lauryn Coffman, Hector D. Mejia, Yelinska Alicea, Raneem Mustafa, Waqar Ahmad, Kerri Crawford, Abdul Latif Khan
    Frontiers in Plant Science.2024;[Epub]     CrossRef
  • Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches
    Ahmad Ali, Tatiana A. Vishnivetskaya, Archana Chauhan
    Brazilian Journal of Microbiology.2024; 55(3): 2437.     CrossRef
  • Vertical and temporal variations in activity, abundance, and composition of nitrite-driven anaerobic methanotrophs in a paddy field
    Caiyu Geng, Lidong Shen, Bingjie Ren, Hechen Huang, Jinghao Jin, Wangting Yang, Evgenios Agathokleous, Jiaqi Liu, Yuling Yang, Yanan Bai, Yuzhi Song
    Applied Soil Ecology.2024; 197: 105342.     CrossRef
  • Vertical fungal community distribution patterns along a stratified soil profile in subalpine Larix principis-rupprechtii plantations on China's Luya mountain
    Xiaojun Qi, Xiaoxia Liang, Baofeng Chai, Tong Jia
    Fungal Biology.2024; 128(8): 2285.     CrossRef
  • Seasonal variation in near-surface seasonally thawed active layer and permafrost soil microbial communities
    Christopher C M Baker, Amanda J Barker, Thomas A Douglas, Stacey J Doherty, Robyn A Barbato
    Environmental Research Letters.2023; 18(5): 055001.     CrossRef
  • Bacterial community diversity and underlying assembly patterns along vertical soil profiles in wetland and meadow habitats on the Zoige Plateau, China
    Hao-Cai Wang, Jin-Feng Qi, De-Rong Xiao, Yi Wang, Wei-Yu Shi, Hang Wang
    Soil Biology and Biochemistry.2023; 184: 109076.     CrossRef
  • Understory ferns promote the restoration of soil microbial diversity and function in previously degraded lands
    Yuming Lu, Maokui Lyu, Xiaoling Xiong, Cui Deng, Yongmeng Jiang, Min Zeng, Jinsheng Xie
    Science of The Total Environment.2023; 870: 161934.     CrossRef
  • Seasonal dynamics of microbial communities in rhizosphere and bulk soils of two temperate forests
    Tianle Xu, Yawen Shen, Zongju Ding, Biao Zhu
    Rhizosphere.2023; 25: 100673.     CrossRef
  • Molecular Ecological Network Structure and Potential Function of the Bacterial Community in the Soil Profile under Indigenous Tree Plantations in Subtropical China
    Lin Qin, Yufeng Wang, Angang Ming, Shouhong Xi, Zhirou Xiao, Jinqian Teng, Ling Tan
    Forests.2023; 14(4): 803.     CrossRef
  • Changes in soil stoichiometry, soil organic carbon mineralization and bacterial community assembly processes across soil profiles
    Guozhen Gao, Guilong Li, Ming Liu, Pengfa Li, Jia Liu, Shiyu Ma, Daming Li, Evangelos Petropoulos, Meng Wu, Zhongpei Li
    Science of The Total Environment.2023; 903: 166408.     CrossRef
  • The Unusual Dominance of the Yeast Genus Glaciozyma in the Deeper Layer in an Antarctic Permafrost Core (Adélie Cove, Northern Victoria Land) Is Driven by Elemental Composition
    Ciro Sannino, Luigimaria Borruso, Ambra Mezzasoma, Benedetta Turchetti, Stefano Ponti, Pietro Buzzini, Tanja Mimmo, Mauro Guglielmin
    Journal of Fungi.2023; 9(4): 435.     CrossRef
  • Responses of dissolved organic carbon to freeze–thaw cycles associated with the changes in microbial activity and soil structure
    You Jin Kim, Jinhyun Kim, Ji Young Jung
    The Cryosphere.2023; 17(7): 3101.     CrossRef
  • The ecological response and distribution characteristics of microorganisms and polycyclic aromatic hydrocarbons in a retired coal gas plant post-thermal remediation site
    Zhenhua Zhao, Barry Mody Oury, Liling Xia, Zhirui Qin, Xiangyu Pan, Jichan Qian, Fangzhou Luo, Yong Wu, Luqi Liu, Wei Wang
    Science of The Total Environment.2023; 857: 159314.     CrossRef
  • The vertical distribution and control factor of microbial biomass and bacterial community at macroecological scales
    Libing He, Xiangyang Sun, Suyan Li, Wenzhi Zhou, Zhe Chen, Xueting Bai
    Science of The Total Environment.2023; 869: 161754.     CrossRef
  • Distribution of microbial communities in seasonally frozen soil layers on the Tibetan Plateau and the driving environmental factors
    Xiaojie Wang, Zhiqiang Yu, Guofeng Shen, Hefa Cheng, Shu Tao
    Environmental Science and Pollution Research.2023; 30(1): 1919.     CrossRef
  • From Surface to Subsurface: Diversity, Composition, and Abundance of Sessile and Endolithic Bacterial, Archaeal, and Eukaryotic Communities in Sand, Clay and Rock Substrates in the Laurentians (Quebec, Canada)
    Julia Meyer, Sheri Zakhary, Marie Larocque, Cassandre S. Lazar
    Microorganisms.2022; 10(1): 129.     CrossRef
  • Microbiogeochemical Traits to Identify Nitrogen Hotspots in Permafrost Regions
    Claudia Fiencke, Maija E. Marushchak, Tina Sanders, Rica Wegner, Christian Beer
    Nitrogen.2022; 3(3): 458.     CrossRef
  • Temporal Variations Rather than Long-Term Warming Control Extracellular Enzyme Activities and Microbial Community Structures in the High Arctic Soil
    Jeongeun Yun, Ji Young Jung, Min Jung Kwon, Juyoung Seo, Sungjin Nam, Yoo Kyung Lee, Hojeong Kang
    Microbial Ecology.2022; 84(1): 168.     CrossRef
  • Vertical and temporal variations of soil bacterial and archaeal communities in wheat-soybean rotation agroecosystem
    Mika Yokota, Yupeng Guan, Yi Fan, Ximei Zhang, Wei Yang
    PeerJ.2022; 10: e12868.     CrossRef
  • Distribution characteristics and factors influencing microbial communities in the core soils of a seawater intrusion area in Longkou City, China
    Shilei Sang, Heng Dai, Bill X. Hu, Zhenyu Huang, Yujiao Liu, Lijia Xu
    Hydrogeology Journal.2022; 30(6): 1833.     CrossRef
  • Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra
    Karl J. Romanowicz, George W. Kling
    Environmental Microbiology.2022; 24(12): 6220.     CrossRef
  • Microbial communities in the diagnostic horizons of agricultural Isohumosols in northeast China reflect their soil classification
    Zhuxiu Liu, Haidong Gu, Qin Yao, Feng Jiao, Junjie Liu, Jian Jin, Xiaobing Liu, Guanghua Wang
    CATENA.2022; 216: 106430.     CrossRef
  • Vertical distribution patterns and drivers of soil bacterial communities across the continuous permafrost region of northeastern China
    Baihui Ren, Yuanman Hu, Rencang Bu
    Ecological Processes.2022;[Epub]     CrossRef
  • Spatial Variation of Microbial Community Structure and Its Driving Environmental Factors in Two Forest Types in Permafrost Region of Greater Xing′an Mountains
    Dandan Song, Yuanquan Cui, Dalong Ma, Xin Li, Lin Liu
    Sustainability.2022; 14(15): 9284.     CrossRef
  • Differences in microbial diversity and environmental factors in ploughing-treated tobacco soil
    Yuzhen Zhang, Guodong Bo, Minchong Shen, Guoming Shen, Jianming Yang, Shanyu Dong, Zhaohe Shu, Zhaobao Wang
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • The relationships of present vegetation, bacteria, and soil properties with soil organic matter characteristics in moist acidic tundra in Alaska
    Sungjin Nam, Josu G. Alday, Mincheol Kim, Hyemin Kim, Yongkang Kim, Taesung Park, Hyoun Soo Lim, Bang Yong Lee, Yoo Kyung Lee, Ji Young Jung
    Science of The Total Environment.2021; 772: 145386.     CrossRef
  • Characteristics of microbial community composition and its relationship with carbon, nitrogen and sulfur in sediments
    Wenfei Liao, Di Tong, Zhongwu Li, Xiaodong Nie, Yaojun Liu, Fengwei Ran, Shanshan Liao
    Science of The Total Environment.2021; 795: 148848.     CrossRef
  • Impact of River Channel Lateral Migration on Microbial Communities across a Discontinuous Permafrost Floodplain
    Madison M. Douglas, Usha F. Lingappa, Michael P. Lamb, Joel C. Rowland, A. Joshua West, Gen Li, Preston C. Kemeny, Austin J. Chadwick, Anastasia Piliouras, Jon Schwenk, Woodward W. Fischer, Isaac Cann
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
  • Rainfall Alters Permafrost Soil Redox Conditions, but Meta-Omics Show Divergent Microbial Community Responses by Tundra Type in the Arctic
    Karl J. Romanowicz, Byron C. Crump, George W. Kling
    Soil Systems.2021; 5(1): 17.     CrossRef
  • Soil bacterial communities vary more by season than with over two decades of experimental warming in Arctic tussock tundra
    Grace Pold, Joshua P. Schimel, Seeta A. Sistla
    Elementa: Science of the Anthropocene.2021;[Epub]     CrossRef
  • Changes in microbial biomass, community composition and diversity, and functioning with soil depth in two alpine ecosystems on the Tibetan plateau
    Tianle Xu, Xiao Chen, Yanhui Hou, Biao Zhu
    Plant and Soil.2021; 459(1-2): 137.     CrossRef
  • Nanoscale zerovalent iron, carbon nanotubes and biochar facilitated the phytoremediation of cadmium contaminated sediments by changing cadmium fractions, sediments properties and bacterial community structure
    Xiaomin Gong, Danlian Huang, Yunguo Liu, Dongsheng Zou, Xi Hu, Lu Zhou, Zhibin Wu, Yang Yang, Zhihua Xiao
    Ecotoxicology and Environmental Safety.2021; 208: 111510.     CrossRef
  • Abiotic factors affecting the bacterial and fungal diversity of permafrost in a rock glacier in the Stelvio Pass (Italian Central Alps)
    Ciro Sannino, Luigimaria Borruso, Ambra Mezzasoma, Dario Battistel, Stefano Ponti, Benedetta Turchetti, Pietro Buzzini, Mauro Guglielmin
    Applied Soil Ecology.2021; 166: 104079.     CrossRef
  • Organic Carbon Mineralization and Bacterial Community of Active Layer Soils Response to Short-Term Warming in the Great Hing’an Mountains of Northeast China
    Xingfeng Dong, Chao Liu, Dalong Ma, Yufei Wu, Haoran Man, Xiangwen Wu, Miao Li, Shuying Zang
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • The Effects of Soil Depth on the Structure of Microbial Communities in Agricultural Soils in Iowa (United States)
    Jingjie Hao, Yen Ning Chai, Lucas Dantas Lopes, Raziel A. Ordóñez, Emily E. Wright, Sotirios Archontoulis, Daniel P. Schachtman, Jeremy D. Semrau
    Applied and Environmental Microbiology.2021;[Epub]     CrossRef
  • Microbial community structure in the river sediments from upstream of Guanting Reservoir: Potential impacts of reclaimed water recharge
    En Xie, Xiaohui Zhao, Kun Li, Panwei Zhang, Xiuhua Zhou, Xiao Zhao
    Science of The Total Environment.2021; 766: 142609.     CrossRef
  • Substrate quality and not dominant plant community determines the vertical distribution and C assimilation of enchytraeids in peatlands
    María Jesús Iglesias Briones, Noela Carrera, Jinhua Huang, Maria Esther Barreal, Rüdiger Maria Schmelz, Mark H. Garnett, Hefin Jones
    Functional Ecology.2020; 34(6): 1280.     CrossRef
  • Spatial Distribution of Toxic Metal(loid)s and Microbial Community Analysis in Soil Vertical Profile at an Abandoned Nonferrous Metal Smelting Site
    Jiejie Yang, Siqi Wang, Ziwen Guo, Yan Deng, Menglong Xu, Siyuan Zhang, Huaqun Yin, Yili Liang, Hongwei Liu, Bo Miao, Delong Meng, Xueduan Liu, Luhua Jiang
    International Journal of Environmental Research and Public Health.2020; 17(19): 7101.     CrossRef
  • Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic
    Min Jung Kwon, Ji Young Jung, Binu M. Tripathi, Mathias Göckede, Yoo Kyung Lee, Mincheol Kim
    Journal of Microbiology.2019; 57(5): 325.     CrossRef
  • Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores
    Binu Mani Tripathi, Mincheol Kim, Yongwon Kim, Eunji Byun, Ji-Woong Yang, Jinho Ahn, Yoo Kyung Lee
    Scientific Reports.2018;[Epub]     CrossRef
  • Microbial diversity and biogeography in Arctic soils
    Lucie A. Malard, David A. Pearce
    Environmental Microbiology Reports.2018; 10(6): 611.     CrossRef
  • Development of Shallow-Depth Soil Temperature Estimation Model Based on Thermal Response in Permafrost Area
    Keunbo Park, Heekwon Yang, Bang Yong Lee, Dongwook Kim
    Applied Sciences.2018; 8(10): 1886.     CrossRef
  • Vertical profiles of microbial communities in perfluoroalkyl substance-contaminated soils
    Yixiang Bao, Bingxin Li, Shuguang Xie, Jun Huang
    Annals of Microbiology.2018; 68(6): 399.     CrossRef
  • On the maverick Planctomycetes
    Sandra Wiegand, Mareike Jogler, Christian Jogler
    FEMS Microbiology Reviews.2018; 42(6): 739.     CrossRef
  • Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates
    Oliver Müller, Toke Bang‐Andreasen, Richard Allen White, Bo Elberling, Neslihan Taş, Timothy Kneafsey, Janet K. Jansson, Lise Øvreås
    Environmental Microbiology.2018; 20(12): 4328.     CrossRef
  • Soil Phospholipid Fatty Acid Biomarkers and β‐Glucosidase Activities after Long‐Term Manure and Fertilizer N Applications
    Newton Z. Lupwayi, Derrick A. Kanashiro, Andrea H. Eastman, Xiying Hao
    Soil Science Society of America Journal.2018; 82(2): 343.     CrossRef
Dominant genera of cyanobacteria in Lake Taihu and their relationships with environmental factors
Lijun Feng , Shiyou Liu , Wenxian Wu , Jiawen Ma , Pei Li , Hailing Xu , Na Li , Yaoyu Feng
J. Microbiol. 2016;54(7):468-476.   Published online June 28, 2016
DOI: https://doi.org/10.1007/s12275-016-6037-4
  • 47 View
  • 0 Download
  • 16 Crossref
AbstractAbstract
Cyanobacterial blooms in freshwaters have become one of the most widespread of environmental problems and threaten water resources worldwide. Previous studies on cyanobacteria in Lake Taihu often collected samples from one site (like Meiliang Bay or Zhushan Bay) and focused on the variation in patterns or abundance of Microcystis during the blooming season. However, the distribution of cyanobacteria in Lake Taihu shows differing pattern in various seasons. In this study, water samples were collected monthly for one year at five sites in Lake Taihu with different trophic status and a physicochemical analysis and denaturing gradient gel electrophoresis (DGGE) were conducted. DGGE fingerprint analysis showed that Microcystis (7/35 bands) and Synechococcus (12/35 bands) were the two most dominant genera present during the study period at all five sites. Cyanobium (3/35 bands) was the third most common genus which has seldom been previously reported in Lake Taihu. Redundancy analysis (RDA) indicated that the cyanobacterial community structure was significantly correlated with NO3 --N, CODMn, and NH4 +-N in the winter and spring, whereas it was correlated with water temperature in the summer and autumn. Limiting the nutrient input (especially of N and C loading) in Lake Taihu would be a key factor in controlling the growth of different genera of cyanobacteria.

Citations

Citations to this article as recorded by  
  • Harmful Cyanobacterial Blooms: Going beyond the “Green” to Monitor and Predict HCBs
    Daniela R. de Figueiredo
    Hydrobiology.2024; 3(1): 11.     CrossRef
  • A framework for identifying factors controlling cyanobacterium Microcystis flos‐aquae blooms by coupled CCM–ECCM Bayesian networks
    O. Tal, I. Ostrovsky, G. Gal
    Ecology and Evolution.2024;[Epub]     CrossRef
  • Analyzing MC-LR distribution characteristics in natural lakes by a novel fluorescence technology
    Xiangyu Hu, Zhaomin Wang, Xiao Ye, Ping Xie, Yong Liu
    Environmental Pollution.2024; 342: 123123.     CrossRef
  • The β-Lactamase Activity at the Community Level Confers β-Lactam Resistance to Bloom-Forming Microcystis aeruginosa Cells
    Yerim Park, Wonjae Kim, Minkyung Kim, Woojun Park
    Journal of Microbiology.2023; 61(9): 807.     CrossRef
  • Identification of driving factors for chlorophyll‐a in multi‐stable shallow lakes of China employing machine learning methods
    Shan Qu, Jian‐jian Wang, Amit Kumar, Zhi‐Guo Yu, Wan‐Qi Zhao
    Ecohydrology.2023;[Epub]     CrossRef
  • Multi-proxy approaches to investigate cyanobacteria invasion from a eutrophic lake into the circumjacent groundwater
    Sisi Ye, Li Gao, Arash Zamyadi, Caitlin M. Glover, Ning Ma, Haiming Wu, Ming Li
    Water Research.2021; 204: 117578.     CrossRef
  • Killing effect of deinoxanthins on cyanobloom-forming Microcystis aeruginosa: Eco-friendly production and specific activity of deinoxanthins
    Wonjae Kim, Minkyung Kim, Minyoung Hong, Woojun Park
    Environmental Research.2021; 200: 111455.     CrossRef
  • Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions
    Zhenyan Zhang, Xiaoji Fan, W.J.G.M. Peijnenburg, Meng Zhang, Liwei Sun, Yujia Zhai, Qi Yu, Juan Wu, Tao Lu, Haifeng Qian
    Journal of Environmental Sciences.2021; 99: 1.     CrossRef
  • Mechanism and control strategy of cyanobacterial bloom in Lake Taihu
    YANG Liuyan, YANG Xinyan, REN Liman, QIAN Xin, XIAO Lin
    Journal of Lake Sciences.2019; 31(1): 18.     CrossRef
  • Effects of nitrogen on interspecific competition between two cell-size cyanobacteria: Microcystis aeruginosa and Synechococcus sp.
    Xiao Tan, Huihui Gu, Yinlan Ruan, Jiajia Zhong, Keshab Parajuli, Jianyong Hu
    Harmful Algae.2019; 89: 101661.     CrossRef
  • Effects of Phosphorus on Interspecific Competition between two cell-size Cyanobacteria: Synechococcus sp. and Microcystis aeruginosa
    Xiao Tan, Huihui Gu, Xidong Zhang, Keshab Parajuli, Zhipeng Duan
    Bulletin of Environmental Contamination and Toxicology.2019; 102(2): 231.     CrossRef
  • High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake
    Hanyan Li, Anwar Alsanea, Michael Barber, Ramesh Goel
    Science of The Total Environment.2019; 661: 465.     CrossRef
  • Influence of cyanobacteria, mixotrophic flagellates, and virioplankton size fraction on transcription of microcystin synthesis genes in the toxic cyanobacterium Microcystis aeruginosa
    Pia I. Scherer, Carolin Absmeier, Maria Urban, Uta Raeder, Juergen Geist, Katrin Zwirglmaier
    MicrobiologyOpen.2018;[Epub]     CrossRef
  • Parameter uncertainty and sensitivity analysis of water quality model in Lake Taihu, China
    Long Jiang, Yiping Li, Xu Zhao, Martin R. Tillotson, Wencai Wang, Shuangshuang Zhang, Linda Sarpong, Qhtan Asmaa, Baozhu Pan
    Ecological Modelling.2018; 375: 1.     CrossRef
  • Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety
    Qi Li, Shuili Yu, Lei Li, Guicai Liu, Zhengyang Gu, Minmin Liu, Zhiyuan Liu, Yubing Ye, Qing Xia, Liumo Ren
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Species Composition and Spatio-Temporal Variations of Phytoplankton of Lake Uluabat
    Nurhayat DALKIRAN, Didem KARACAOĞLU, Şükran DERE, Şakir ÇINAR, Cafer BULUT, Soner SAVAŞER
    Journal of Limnology and Freshwater Fisheries Research.2016; 2(3): 121.     CrossRef
Molecular diversity and distribution of indigenous arbuscular mycorrhizal communities colonizing roots of two different winter cover crops in response to their root proliferation
Masao Higo , Katsunori Isobe , Yusuke Miyazawa , Yukiya Matsuda , Rhae A. Drijber , Yoichi Torigoe
J. Microbiol. 2016;54(2):86-97.   Published online February 2, 2016
DOI: https://doi.org/10.1007/s12275-016-5379-2
  • 46 View
  • 0 Download
  • 19 Crossref
AbstractAbstract
A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These
results
also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.

Citations

Citations to this article as recorded by  
  • Enhanced Soil Fertility and Carbon Dynamics in Organic Farming Systems: The Role of Arbuscular Mycorrhizal Fungal Abundance
    So Hee Park, Bo Ram Kang, Jinsook Kim, Youngmi Lee, Hong Shik Nam, Tae Kwon Lee
    Journal of Fungi.2024; 10(9): 598.     CrossRef
  • Cover Crops Modulate the Response of Arbuscular Mycorrhizal Fungi to Water Supply: A Field Study in Corn
    Micaela Tosi, Cameron M. Ogilvie, Federico N. Spagnoletti, Sarah Fournier, Ralph C. Martin, Kari E. Dunfield
    Plants.2023; 12(5): 1015.     CrossRef
  • Cover crop identity determines root fungal community and arbuscular mycorrhiza colonization in following main crops
    Irene García‐González, Laura B. Martínez‐García, Janna M. Barel, Henk Martens, L. Basten Snoek, Chiquinquirá Hontoria, Gerlinde B. De Deyn
    European Journal of Soil Science.2023;[Epub]     CrossRef
  • Effects of Carbon Amendments, Tillage and Cover Cropping on Arbuscular Mycorrhizal Fungi Association and Root Architecture in Corn and Cotton Crop Sequence
    Binita Thapa, Jake Mowrer
    Agronomy.2022; 12(9): 2185.     CrossRef
  • The biological sink of atmospheric H2 is more sensitive to spatial variation of microbial diversity than N2O and CO2 emissions in a winter cover crop field trial
    Xavier Baril, Audrey-Anne Durand, Narin Srei, Steve Lamothe, Caroline Provost, Christine Martineau, Kari Dunfield, Philippe Constant
    Science of The Total Environment.2022; 821: 153420.     CrossRef
  • Glomerales Dominate Arbuscular Mycorrhizal Fungal Communities Associated with Spontaneous Plants in Phosphate-Rich Soils of Former Rock Phosphate Mining Sites
    Amandine Ducousso-Détrez, Robin Raveau, Joël Fontaine, Mohamed Hijri, Anissa Lounès-Hadj Sahraoui
    Microorganisms.2022; 10(12): 2406.     CrossRef
  • Arbuscular mycorrhizal fungi and soil aggregation in a no‐tillage system with crop rotation
    Mara Regina Moitinho, Carolina Fernandes, Priscila Viviane Truber, Adolfo Valente Marcelo, José Eduardo Corá, Elton da Silva Bicalho
    Journal of Plant Nutrition and Soil Science.2020; 183(4): 482.     CrossRef
  • Fungal community shifts in soils with varied cover crop treatments and edaphic properties
    Mara L. Cloutier, Ebony Murrell, Mary Barbercheck, Jason Kaye, Denise Finney, Irene García-González, Mary Ann Bruns
    Scientific Reports.2020;[Epub]     CrossRef
  • Impact of Phosphorus Fertilization on Tomato Growth and Arbuscular Mycorrhizal Fungal Communities
    Masao Higo, Mirai Azuma, Yusuke Kamiyoshihara, Akari Kanda, Yuya Tatewaki, Katsunori Isobe
    Microorganisms.2020; 8(2): 178.     CrossRef
  • First report of community dynamics of arbuscular mycorrhizal fungi in radiocesium degradation lands after the Fukushima-Daiichi Nuclear disaster in Japan
    Masao Higo, Dong-Jin Kang, Katsunori Isobe
    Scientific Reports.2019;[Epub]     CrossRef
  • Cover cropping can be a stronger determinant than host crop identity for arbuscular mycorrhizal fungal communities colonizing maize and soybean
    Masao Higo, Yuya Tatewaki, Kento Gunji, Akari Kaseda, Katsunori Isobe
    PeerJ.2019; 7: e6403.     CrossRef
  • The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation
    C. Hontoria, I. García-González, M. Quemada, A. Roldán, M.M. Alguacil
    Science of The Total Environment.2019; 660: 913.     CrossRef
  • Phosphorus Acquisition Efficiency Related to Root Traits: Is Mycorrhizal Symbiosis a Key Factor to Wheat and Barley Cropping?
    Pedro Campos, Fernando Borie, Pablo Cornejo, Juan A. López-Ráez, Álvaro López-García, Alex Seguel
    Frontiers in Plant Science.2018;[Epub]     CrossRef
  • How are arbuscular mycorrhizal associations related to maize growth performance during short‐term cover crop rotation?
    Masao Higo, Yuichi Takahashi, Kento Gunji, Katsunori Isobe
    Journal of the Science of Food and Agriculture.2018; 98(4): 1388.     CrossRef
  • Legacy of eight‐year cover cropping on mycorrhizae, soil, and plants
    Irene García-González, Miguel Quemada, José Luis Gabriel, María Alonso-Ayuso, Chiquinquirá Hontoria
    Journal of Plant Nutrition and Soil Science.2018; 181(6): 818.     CrossRef
  • Mycorrhizal fungal community structure in tropical humid soils under fallow and cropping conditions
    Martin Jemo, Driss Dhiba, Abeer Hashem, Elsayed Fathi Abd_Allah, Abdulaziz A. Alqarawi, Lam-Son Phan Tran
    Scientific Reports.2018;[Epub]     CrossRef
  • Effect of winter wheat cover cropping with no-till cultivation on the community structure of arbuscular mycorrhizal fungi colonizing the subsequent soybean
    Sho Morimoto, Tomoko Uchida, Hisaya Matsunami, Hiroyuki Kobayashi
    Soil Science and Plant Nutrition.2018; 64(5): 545.     CrossRef
  • Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?
    Masao Higo, Ryohei Sato, Ayu Serizawa, Yuichi Takahashi, Kento Gunji, Yuya Tatewaki, Katsunori Isobe
    PeerJ.2018; 6: e4606.     CrossRef
  • A study of Glycine max (soybean) fungal communities under different agricultural practices
    Sarah L. Dean, Terri Billingsley Tobias, Winthrop B. Phippen, Andrew W. Clayton, Joel Gruver, Andrea Porras-Alfaro
    Plant Gene.2017; 11: 8.     CrossRef
Research Support, Non-U.S. Gov't
Effect of Long-Term Different Fertilization on Bacterial Community Structures and Diversity in Citrus Orchard Soil of Volcanic Ash
Jae Ho Joa , Hang Yeon Weon , Hae Nam Hyun , Young Chull Jeun , Sang Wook Koh
J. Microbiol. 2014;52(12):995-1001.   Published online November 29, 2014
DOI: https://doi.org/10.1007/s12275-014-4129-6
  • 46 View
  • 0 Download
  • 27 Crossref
AbstractAbstract
This study was conducted to assess bacterial species richness, diversity and community distribution according to different fertilization regimes for 16 years in citrus orchard soil of volcanic ash. Soil samples were collected and analyzed from Compost (cattle manure, 2,000 kg/10a), 1/2 NPK+compost (14-20-14+2,000 kg/10a), NPK+compost (28-40-28+2,000 kg/10a), NPK (28-40-28 kg/10a), 3 NPK (84-120-84 kg/10a), and Control (no fertilization) plot which have been managed in the same manners with compost and different amount of chemical fertilization. The range of pyrosequencing reads and OTUs were 4,687–7,330 and 1,790–3,695, respectively. Species richness estimates such as Ace, Chao1, and Shannon index were higher in 1/2 NPK+compost than other treatments, which were 15,202, 9,112, 7.7, respectively. Dominant bacterial groups at level of phylum were Proteobacteria, Acidobacteria, and Actinobacteria. Those were occupied at 70.9% in 1/2 NPK+compost. Dominant bacterial groups at level of genus were Pseudolabrys, Bradyrhizobium, and Acidobacteria. Those were distributed at 14.4% of a total of bacteria in Compost. Soil pH displayed significantly closely related to bacterial species richness estimates such as Ace, Chao1 (p<0.05) and Shannon index (p<0.01). However, it showed the negative correlation with exchangeable aluminum contents (p<0.05). In conclusion, diversity of bacterial community in citrus orchard soil was affected by fertilization management, soil pH changes and characteristics of volcanic ash.

Citations

Citations to this article as recorded by  
  • Responses of Nutrients and Bacterial Communities to Temperature and Nitrogen Addition in Rhizosphere Soil for Malus sieversii Seedlings
    Huanhuan Zhang, Jinshan Xi, Hossam Salah Mahmoud Ali, Fengyun Zhao, Songlin Yu, Kun Yu
    Journal of Soil Science and Plant Nutrition.2024; 24(2): 2786.     CrossRef
  • Effects of peach branch organic fertilizer on the soil microbial community in peach orachards
    Chenyu Liu, Defeng Han, Haiqing Yang, Zhiling Liu, Chengda Gao, Yueping Liu
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Microbial contribution to organic carbon accumulation in volcanic ash soils
    Hye In Yang, Nuri Baek, Jin-Hyeob Kwak, Sang-Sun Lim, Young-Han Lee, Sang-Mo Lee, Woo-Jung Choi
    Journal of Soils and Sediments.2023; 23(2): 866.     CrossRef
  • Variation of soil bacterial communities in a chronosequence of citrus orchard
    Ya-bo Jin, Zheng Fang, Xin-bin Zhou
    Annals of Microbiology.2022;[Epub]     CrossRef
  • Changes in Soil Microbial Community along a Chronosequence of Perennial Mugwort Cropping in Northern China Plain
    Furong Tian, Zhenxing Zhou, Xuefei Wang, Kunpeng Zhang, Shijie Han
    Agronomy.2022; 12(7): 1568.     CrossRef
  • Spatiotemporal prediction and optimization of environmental suitability in citrus-producing areas
    Zhenyu Wu, Shizhao Zou, Yong Yang, Xue Yang, Qingzhong Han, Chang Chen, Mingxia Wang, Wenfeng Tan
    Frontiers in Environmental Science.2022;[Epub]     CrossRef
  • Soil Microbes Drive the Flourishing Growth of Plants From Leucocalocybe mongolica Fairy Ring
    Qiqi Wang, Chong Wang, Yumei Wei, Weiqin Yao, Yonghui Lei, Yanfei Sun
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Effects of Temperature and Nitrogen Application on Carbon and Nitrogen Accumulation and Bacterial Community Composition in Apple Rhizosphere Soil
    Huanhuan Zhang, Fesobi Olumide Phillip, Linnan Wu, Fengyun Zhao, Songlin Yu, Kun Yu
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system
    Zijun Zhou, Zengqiang Li, Kun Chen, Zhaoming Chen, Xiangzhong Zeng, Hua Yu, Song Guo, Yuxian Shangguan, Qingrui Chen, Hongzhu Fan, Shihua Tu, Mingjiang He, Yusheng Qin
    SOIL.2021; 7(2): 595.     CrossRef
  • Recovery of Nitrogen and Phosphorus Nutrition from Anaerobic Digestate by Natural Superabsorbent Fiber-Based Adsorbent and Reusing as an Environmentally Friendly Slow-Release Fertilizer for Horticultural Plants
    Le Zhang, Kai-Chee Loh, Suseeven Sarvanantharajah, Ye Shen, Yen Wah Tong, Chi-Hwa Wang, Yanjun Dai
    Waste and Biomass Valorization.2020; 11(10): 5223.     CrossRef
  • Candidatus Liberibacter asiaticus: virulence traits and control strategies
    Maxuel Andrade, Jinyun Li, Nian Wang
    Tropical Plant Pathology.2020; 45(3): 285.     CrossRef
  • Alteration of soil nitrifiers and denitrifiers and their driving factors during intensive management of Moso bamboo (Phyllostachys pubescens)
    Linhua Cao, Xiao Yu, Caixia Liu, Ming Liu, Junhui Chen, Hua Qin, Chenfei Liang, Qiufang Xu, Petri Penttinen
    Science of The Total Environment.2020; 705: 135236.     CrossRef
  • Seasonal Change in Microbial Diversity and Its Relationship with Soil Chemical Properties in an Orchard
    Xuhui Luo, Ming Kuang Wang, Guiping Hu, Boqi Weng, Varenyam Achal
    PLOS ONE.2019; 14(12): e0215556.     CrossRef
  • Long-term inorganic fertilizer use influences bacterial communities in Mollisols of Northeast China based on high-throughput sequencing and network analyses
    Zhenhua Yu, Xiaojing Hu, Dan Wei, Junjie Liu, Baoku Zhou, Jian Jin, Xiaobing Liu, Guanghua Wang
    Archives of Agronomy and Soil Science.2019; 65(10): 1331.     CrossRef
  • A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments
    Shin Ae Lee, Yiseul Kim, Jeong Myeong Kim, Bora Chu, Jae-Ho Joa, Mee Kyung Sang, Jaekyeong Song, Hang-Yeon Weon
    Scientific Reports.2019;[Epub]     CrossRef
  • Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration
    Chao Yang, Nan Liu, Yingjun Zhang
    Geoderma.2019; 337: 444.     CrossRef
  • Challenges for Managing Candidatus Liberibacter spp. (Huanglongbing Disease Pathogen): Current Control Measures and Future Directions
    Ryan A. Blaustein, Graciela L. Lorca, Max Teplitski
    Phytopathology®.2018; 108(4): 424.     CrossRef
  • Soil productivity and structure of bacterial and fungal communities in unfertilized arable soil
    Boxi Wang, Yoichi Adachi, Shuichi Sugiyama, Lorenzo Brusetti
    PLOS ONE.2018; 13(9): e0204085.     CrossRef
  • Bradyrhizobium japonicum USDA110: A representative model organism for studying the impact of pollutants on soil microbiota
    Vishal Shah, Sanjana Subramaniam
    Science of The Total Environment.2018; 624: 963.     CrossRef
  • Manure and mineral fertilization change enzyme activity and bacterial community in millet rhizosphere soils
    Lixia Xu, Min Yi, Huilan Yi, Erhu Guo, Aiying Zhang
    World Journal of Microbiology and Biotechnology.2018;[Epub]     CrossRef
  • Influence of rhinoceros beetle (Trypoxylus dichotomus septentrionalis) larvae and temperature on the soil bacterial community composition under laboratory conditions
    Jinu Eo, Young-Eun Na, Myung-Hyun Kim
    Soil Biology and Biochemistry.2017; 108: 27.     CrossRef
  • Responses of N2O reductase gene (nosZ)-denitrifier communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil
    Ying-yan WANG, Sheng-e LU, Quan-ju XIANG, Xiu-mei YU, Ke ZHAO, Xiao-ping ZHANG, Shi-hua TU, Yun-fu GU
    Journal of Integrative Agriculture.2017; 16(11): 2597.     CrossRef
  • Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community
    Jinu Eo, Kee-Choon Park
    Agriculture, Ecosystems & Environment.2016; 231: 176.     CrossRef
  • Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies
    Davide Francioli, Elke Schulz, Guillaume Lentendu, Tesfaye Wubet, François Buscot, Thomas Reitz
    Frontiers in Microbiology.2016;[Epub]     CrossRef
  • Illumina high-throughput sequencing and comparative analysis of bacterial communities in cherry orchard soil
    Lingzhi Liu, Deguo Lyu, Jingyun Li, Zeyuan Yang, Sijun Qin
    Toxicological & Environmental Chemistry.2016; 98(3-4): 462.     CrossRef
  • Comparative analysis of bacterial diversity in the rhizosphere of tomato by culture-dependent and -independent approaches
    Shin Ae Lee, Jiyoung Park, Bora Chu, Jeong Myeong Kim, Jae-Ho Joa, Mee Kyung Sang, Jaekyeong Song, Hang-Yeon Weon
    Journal of Microbiology.2016; 54(12): 823.     CrossRef
  • Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea
    Jeong Myeong Kim, An-Sung Roh, Seung-Chul Choi, Eun-Jeong Kim, Moon-Tae Choi, Byung-Koo Ahn, Sun-Kuk Kim, Young-Han Lee, Jae-Ho Joa, Seong-Soo Kang, Shin Ae Lee, Jae-Hyung Ahn, Jaekyeong Song, Hang-Yeon Weon
    Journal of Microbiology.2016; 54(12): 838.     CrossRef
Research Support, U.S. Gov't, Non-P.H.S.
Functional Shifts in Unvegetated, Perhumid, Recently-Deglaciated Soils Do Not Correlate with Shifts in Soil Bacterial Community Composition
Sarah R. Sattin , Cory C. Cleveland , Eran Hood , Sasha C. Reed , Andrew J. King , Steven K. Schmidt , Michael S. Robeson , Nataly Ascarrunz , Diana R. Nemergut
J. Microbiol. 2009;47(6):673-681.   Published online February 4, 2010
DOI: https://doi.org/10.1007/s12275-009-0194-7
  • 39 View
  • 0 Download
  • 73 Scopus
AbstractAbstract
Past work in recently deglaciated soils demonstrates that microbial communities undergo shifts prior to plant colonization. To date, most studies have focused on relatively ‘long’ chronosequences with the ability to sample plant-free sites over at least 50 years of development. However, some recently deglaciated soils feature rapid plant colonization and questions remain about the relative rate of change in the microbial community in the unvegetated soils of these chronosequences. Thus, we investigated the forelands of the Mendenhall Glacier near Juneau, AK, USA, where plants rapidly establish. We collected unvegetated samples representing soils that had been ice-free for 0, 1, 4, and 8 years. Total nitrogen (N) ranged from 0.00~0.14 mg/g soil, soil organic carbon pools ranged from 0.6~2.3 mg/g soil, and both decreased in concentration between the 0 and 4 yr soils. Biologically available phosphorus (P) and pH underwent similar dynamics. However, both pH and available P increased in the 8 yr soils. Nitrogen fixation was nearly undetectable in the most recently exposed soils, and increased in the 8 yr soils to ~5 ng N fixed/cm2/h, a trend that was matched by the activity of the soil N-cycling enzymes urease and β-1,4-N-acetyl-glucosaminidase. 16S rRNA gene clone libraries revealed no significant differences between the 0 and 8 yr soils; however, 8 yr soils featured the presence of cyanobacteria, a division wholly absent from the 0 yr soils. Taken together, our results suggest that microbes are consuming allochtonous organic matter sources in the most recently exposed soils. Once this carbon source is depleted, a competitive advantage may be ceded to microbes not reliant on in situ nutrient sources.
Research Support, Non-U.S. Gov't
Dominance of Endospore-forming Bacteria on a Rotating Activated Bacillus Contactor Biofilm for Advanced Wastewater Treatment
Seong Joo Park , Jerng Chang Yoon , Kwang-Soo Shin , Eung Ho Kim , Soobin Yim , Yeon-Je Cho , Gi Moon Sung , Dong-Geun Lee , Seung Bum Kim , Dong-Uk Lee , Sung-Hoon Woo , Ben Koopman
J. Microbiol. 2007;45(2):113-121.
DOI: https://doi.org/2525 [pii]
  • 34 View
  • 0 Download
AbstractAbstract
The bacterial diversity inherent to the biofilm community structure of a modified rotating biological contactor wastewater treatment process, referred to as the Rotating Activated Bacillus Contactor (RABC) process, was characterized in this study, via both culture-dependent and culture-independent methods. On the basis of culture-dependent methods, Bacillus sp. were found to exist in large numbers on the biofilm (6.5% of the heterotrophic bacteria) and the microbial composition of the biofilms was quite simple. Only three phyla were identified-namely, the Proteobacteria, the Actinobacteria (High G+C Gram-positive bacteria), and the Firmicutes (Low G+C Gram-positive bacteria). The culture-independent partial 16S rDNA sequence analysis revealed a considerably more diverse microbial composition within the biofilms. A total of eight phyla were recovered in this case, three of which were major groups: the Firmicutes (43.9%), the Proteobacteria (28.6%), and the Bacteroidetes (17.6%). The remaining five phyla were minor groups: the Planctomycetes (4.4%), the Chlorobi (2.2%), the Actinobacteria (1.1%), the Nitrospirae (1.1%), and the Verrucomicrobia (1.1%). The two most abundant genera detected were the endospore-forming bacteria (31.8%), Clostridium and Bacillus, both of which are members of the Firmicutes phylum. This finding indicates that these endospore-forming bacteria successfully colonized and dominated the RABC process biofilms. Many of the colonies or clones recovered from the biofilms evidenced significantly high homology in the 16S rDNA sequences of bacteria stored in databases associated with advanced wastewater treatment capabilities, including nitrification and denitrification, phosphorus accumulation, the removal of volatile odors, and the removal of chlorohydrocarbons or heavy metals. The microbial community structures observed in the biofilms were found to correlate nicely with the enhanced performance of advanced wastewater treatment protocols.
Review
Effects of Elevated Atmospheric CO_2 Concentrations on Soil Microorganisms
Chris Freeman , Seon-Young Kim , Seung-Hoon Lee , Hojeong Kang
J. Microbiol. 2004;42(4):267-277.
DOI: https://doi.org/2111 [pii]
  • 41 View
  • 0 Download
AbstractAbstract
Effects of elevated CO_2 on soil microorganisms are known to be mediated by various interactions with plants, for which such effects are relatively poorly documented. In this review, we summarize and synthesize results from studies assessing impacts of elevated CO_2 on soil ecosystems, focusing primarily on plants and a variety the of microbial processes. The processes considered include changes in microbial biomass of C and N, microbial number, respiration rates, organic matter decomposition, soil enzyme activities, microbial community composition, and functional groups of bacteria mediating trace gas emission such as methane and nitrous oxide. Elevated CO_2 in atmosphere may enhance certain microbial processes such as CH_4 emission from wetlands due to enhanced carbon supply from plants. However, responses of extracellular enzyme activities and microbial community structure are still controversy, because interferences with other factors such as the types of plants, nutrient availabilitial in soil, soil types, analysis methods, and types of CO_2 fumigation systems are not fully understood.
Research Support, Non-U.S. Gov't
Monitoring of Bacterial Community in a Coniferous Forest Soil After a Wildfire
Ok-Sun Kim , Jae-Jun Yoo , Dong-Hun Lee , Tae-Seok Ahn , Hong-Gyu Song
J. Microbiol. 2004;42(4):278-284.
DOI: https://doi.org/2110 [pii]
  • 36 View
  • 0 Download
AbstractAbstract
Changes in the soil bacterial community of a coniferous forest were analyzed to assess microbial responses to wildfire. Soil samples were collected from three different depths in lightly and severely burned areas, as well as a nearby unburned control area. Direct bacterial counts ranged from 3.3-22.6 x10^8 cells/(g . soil). In surface soil, direct bacterial counts of unburned soil exhibited a great degree of fluctuation. Those in lightly burned soil changed less, but no significant variation was observed in the severely burned soil. The fluctuations of direct bacterial count were less in the middle and deep soil layers. The structure of the bacterial community was analyzed via the fluorescent in situ hybridization method. The number of bacteria detected with the eubacteria-targeted probe out of the direct bacterial count varied from 30.3 to 84.7%, and these ratios were generally higher in the burned soils than in the unburned control soils. In the surface unburned soil, the ratios of [alpha]-, [beta]- and [gamma]-proteobacteria, Cytophaga-Flavobacterium group, and other eubacteria groups to total eubacteria were 9.9, 10.6, 15.5, 9.0, and 55.0%, respectively, and these ratios were relatively stable. The ratios of [alpha]-, [beta]- and [gamma]-proteobacteria, and Cytophaga-Flavobacterium group to total eubacteria increased immediately after the wildfire, and the other eubacterial proportions decreased in the surface and middle layer soils. By way of contrast, the composition of the 5 groups of eubacteria in the subsurface soil exhibited no significant fluctuations during the entire period. The total bacterial population and bacterial community structure disturbed by wildfire soon began to recover, and original levels seemed to be restored 3 months after the wildfire.

Journal of Microbiology : Journal of Microbiology
TOP