Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "complete genome"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi
Young Joon Oh , Joon Yong Kim , Seul Ki Lim , Min-Sung Kwon , Hak-Jong Choi
J. Microbiol. 2021;59(5):460-466.   Published online April 28, 2021
DOI: https://doi.org/10.1007/s12275-021-0513-1
  • 71 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
To date, all species in the genus Salicibibacter have been isolated in Korean commercial kimchi. We aimed to describe the taxonomic characteristics of two strains, NKC5-3T and NKC21-4T, isolated from commercial kimchi collected from various regions in the Republic of Korea. Cells of these strains were rod-shaped, Gram-positive, aerobic, oxidase- and catalase- positive, non-motile, halophilic, and alkalitolerant. Both strains, unlike other species of the genus Salicibibacter, could not grow without NaCl. Strains NKC5-3T and NKC21-4T could tolerate up to 25.0% (w/v) NaCl (optimum 10%) and grow at pH 7.0–10.0 (optimum 8.5) and 8.0–9.0 (optimum 8.5), respectively; they showed 97.1% 16S rRNA gene sequence similarity to each other and were most closely related to S. kimchii NKC1-1T (97.0% and 96.8% similarity, respectively). The genome of strain NKC5-3T was nearly 4.6 Mb in size, with 4,456 protein-coding sequences (CDSs), whereas NKC21-4T genome was nearly 3.9 Mb in size, with 3,717 CDSs. OrthoANI values between the novel strains and S. kimchii NKC1-1T were far lower than the species demarcation threshold. NKC5-3T and NKC21-4T clustered together to form branches that were distinct from the other Salicibibacter species. The major fatty acids in these strains were anteiso-C15:0 and anteiso-C17:0, and the predominant menaquinone was menaquinone-7. The polar lipids of NKC5-3T included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and five unidentified phospholipids (PL), and those of NKC21-4T included DPG, PG, seven unidentified PLs, and an unidentified lipid. Both isolates had DPG, which is the first case in the genus Salicibibacter. The genomic G + C content of strains NKC5-3T and NKC21-4T was 44.7 and 44.9 mol%, respectively. Based on phenotypic, genomic, phylogenetic, and chemotaxonomic analyses, strains NKC5-3T (= KACC 22040T = DSM 111417T) and NKC21-4T (= KACC 22041T = DSM 111418T) represent two novel species of the genus Salicibibacter, for which the names Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov. are proposed.

Citations

Citations to this article as recorded by  
  • Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
Spot 42 RNA regulates putrescine catabolism in Escherichia coli by controlling the expression of puuE at the post-transcription level
Xin Sun , Ruyan Li , Guochen Wan , Wanli Peng , Shuangjun Lin , Zixin Deng , Rubing Liang
J. Microbiol. 2021;59(2):175-185.   Published online February 1, 2021
DOI: https://doi.org/10.1007/s12275-021-0421-4
  • 68 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Putrescine, a typical polyamine compound important for cell growth and stress resistance, can be utilized as an energy source. However, the regulation of its catabolism is unclear. Here the small RNA (sRNA) Spot 42, an essential regulator of carbon catabolite repression (CCR), was confirmed to participate in the post-transcriptional regulation of putrescine catabolism in Escherichia coli. Its encoding gene spf exclusively exists in the γ-proteobacteria and contains specific binding sites to the 5􍿁-untranslated regions of the puuE gene, which encodes transaminase in the glutamylated putrescine pathway of putrescine catabolism converting γ-aminobutyrate (GABA) into succinate semialdehyde (SSA). The transcription of the spf gene was induced by glucose, inhibited by putrescine, and unaffected by PuuR, the repressor of puu genes. Excess Spot 42 repressed the expression of PuuE significantly in an antisense mechanism through the direct and specific base-pairing between the 51–57 nt of Spot 42 and the 5􍿁- UTR of puuE. Interestingly, Spot 42 mainly influenced the stability of the puuCBE transcript. This work revealed the regulatory role of Spot 42 in putrescine catabolism, in the switch between favorable and non-favorable carbon source utilization, and in the balance of metabolism of carbon and nitrogen sources.

Citations

Citations to this article as recorded by  
  • Regulation of TCA cycle genes by srbA sRNA: Impacts on Pseudomonas aeruginosa virulence and survival
    Piyali Saha, Samir Kumar Mukherjee, Sk Tofajjen Hossain
    Biochemical and Biophysical Research Communications.2024; 737: 150520.     CrossRef
  • Rational Design of High-Efficiency Synthetic Small Regulatory RNAs and Their Application in Robust Genetic Circuit Performance Through Tight Control of Leaky Gene Expression
    Jun Ren, Nuong Thi Nong, Phuong N. Lam Vo, Hyang-Mi Lee, Dokyun Na
    ACS Synthetic Biology.2024; 13(10): 3256.     CrossRef
Research Support, Non-U.S. Gov't
NOTE] Biological and Genetic Properties of SA14-14-2, a Live-Attenuated Japanese Encephalitis Vaccine That Is Currently Available for Humans
Byung-Hak Song , Gil-Nam Yun , Jin-Kyoung Kim , Sang-Im Yun , Young-Min Lee
J. Microbiol. 2012;50(4):698-706.   Published online August 25, 2012
DOI: https://doi.org/10.1007/s12275-012-2336-6
  • 54 View
  • 0 Download
  • 14 Crossref
AbstractAbstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is a major cause of acute encephalitis, a disease of significance for global public health. In the absence of antiviral therapy to treat JEV infection, vaccination is the most effective method of preventing the disease. In JE-endemic areas, the most widely used vaccine to date is SA14-14-2, a live-attenuated virus derived from its virulent parent SA14. In this study, we describe the biological properties of SA14-14-2, both in vitro and in vivo, and report the genetic characteristics of its genomic RNA. In BHK-21 (hamster kidney) cells, SA14-14-2 displayed a slight delay in plaque formation and growth kinetics when compared to a virulent JEV strain, CNU/LP2, with no decrease in maximum virus production. The delay in viral growth was also observed in two other cell lines, SH-SY5Y (human neuroblastoma) and C6/36 (mosquito larva), which are potentially relevant to JEV pathogenesis and transmission. In 3-week-old ICR mice, SA14-14-2 did not cause any symptoms or death after either intracerebral or peripheral inoculation with a maximum dose of up to 1.5×103 plaqueforming units (PFU) per mouse. The SA14-14-2 genome consisted of 10977 nucleotides, one nucleotide longer than all the previously reported genomes of SA14-14-2, SA14 and two other SA14-derived attenuated viruses. This difference was due to an insertion of one G nucleotide at position 10701 in the 3' noncoding region. Also, we noted a significant number of nucleotide and/or amino acid substitutions throughout the genome of SA14-14-2, except for the prM protein-coding region, that differed from SA14 and/or the other two attenuated viruses. Our results, together with others’, provide a foundation not only for the study of JEV virulence but also for the development of new and improved vaccines for JEV.

Citations

Citations to this article as recorded by  
  • Comprehensive analysis of differential expression profiles via transcriptome sequencing in SH-SY5Y cells infected with CV-A16
    Yajie Hu, Zhen Yang, Shenglan Wang, Danxiong Sun, Mingmei Zhong, Mudong Wen, Jie Song, Yunhui Zhang, Juan Carlos de la Torre
    PLOS ONE.2020; 15(11): e0241174.     CrossRef
  • Genetic and neuroattenuation phenotypic characteristics and their stabilities of SA14-14-2 vaccine seed virus
    Xinyu Liu, Danhua Zhao, Lili Jia, Hongshan Xu, Rui Na, Yonghong Ge, Shaoxiang Liu, Yongxin Yu, Yuhua Li
    Vaccine.2018; 36(31): 4650.     CrossRef
  • Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism
    Mackenzie M. Shipley, Colleen A. Mangold, Chad V. Kuny, Moriah L. Szpara, Rozanne M. Sandri-Goldin
    Journal of Virology.2017;[Epub]     CrossRef
  • Japanese encephalitis virus invasion of cell: allies and alleys
    Minu Nain, Malik Z. Abdin, Manjula Kalia, Sudhanshu Vrati
    Reviews in Medical Virology.2016; 26(2): 129.     CrossRef
  • Complete Genome Sequences of Three Historically Important, Spatiotemporally Distinct, and Genetically Divergent Strains of Zika Virus: MR-766, P6-740, and PRVABC-59
    Sang-Im Yun, Byung-Hak Song, Jordan C. Frank, Justin G. Julander, Irina A. Polejaeva, Christopher J. Davies, Kenneth L. White, Young-Min Lee
    Genome Announcements.2016;[Epub]     CrossRef
  • The Emerging Duck Flavivirus Is Not Pathogenic for Primates and Is Highly Sensitive to Mammalian Interferon Antiviral Signaling
    Hong-Jiang Wang, Xiao-Feng Li, Long Liu, Yan-Peng Xu, Qing Ye, Yong-Qiang Deng, Xing-Yao Huang, Hui Zhao, E-De Qin, Pei-Yong Shi, George F. Gao, Cheng-Feng Qin, M. S. Diamond
    Journal of Virology.2016; 90(14): 6538.     CrossRef
  • Genetic Determinants of Japanese Encephalitis Virus Vaccine Strain SA14-14-2 That Govern Attenuation of Virulence in Mice
    Gregory D. Gromowski, Cai-Yen Firestone, Stephen S. Whitehead, M. S. Diamond
    Journal of Virology.2015; 89(12): 6328.     CrossRef
  • Profiling of Viral Proteins Expressed from the Genomic RNA of Japanese Encephalitis Virus Using a Panel of 15 Region-Specific Polyclonal Rabbit Antisera: Implications for Viral Gene Expression
    Jin-Kyoung Kim, Jeong-Min Kim, Byung-Hak Song, Sang-Im Yun, Gil-Nam Yun, Sung-June Byun, Young-Min Lee, Xi Zhou
    PLOS ONE.2015; 10(4): e0124318.     CrossRef
  • Extended stability of cyclin D1 contributes to limited cell cycle arrest at G1-phase in BHK-21 cells with Japanese encephalitis virus persistent infection
    Ji Young Kim, Soo Young Park, Hey Rhyoung Lyoo, Eung Seo Koo, Man Su Kim, Yong Seok Jeong
    Journal of Microbiology.2015; 53(1): 77.     CrossRef
  • A Lentiviral Vector Expressing Japanese Encephalitis Virus-like Particles Elicits Broad Neutralizing Antibody Response in Pigs
    Mélissanne de Wispelaere, Meret Ricklin, Philippe Souque, Marie-Pascale Frenkiel, Sylvie Paulous, Obdulio Garcìa-Nicolàs, Artur Summerfield, Pierre Charneau, Philippe Desprès, Fatah Kashanchi
    PLOS Neglected Tropical Diseases.2015; 9(10): e0004081.     CrossRef
  • Japanese encephalitis
    Sang-Im Yun, Young-Min Lee
    Human Vaccines & Immunotherapeutics.2014; 10(2): 263.     CrossRef
  • Japanese encephalitis virus vaccine candidates generated by chimerization with dengue virus type 4
    Gregory D. Gromowski, Cai-Yen Firestone, Christopher T. Hanson, Stephen S. Whitehead
    Vaccine.2014; 32(25): 3010.     CrossRef
  • Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A
    Xiao-Dan Li, Xiao-Feng Li, Han-Qing Ye, Cheng-Lin Deng, Qing Ye, Chao Shan, Bao-Di Shang, Lin-Lin Xu, Shi-Hua Li, Sheng-Bo Cao, Zhi-Ming Yuan, Pei-Yong Shi, Cheng-Feng Qin, Bo Zhang
    Journal of General Virology .2014; 95(4): 806.     CrossRef
  • Inhibition of japanese encephalitis virus infection by flavivirus recombinant e protein domain III
    Jingjing Fan, Yi Liu, Xuping Xie, Bo Zhang, Zhiming Yuan
    Virologica Sinica.2013; 28(3): 152.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP